
EC 282: Introduction to Econometrics
Lecture Notes

Spring 2026

Part I: Probability & Statistics Review
Random Variables and Distributions
Expected Value, Variance, Covariance
Conditional Probability and Bayes’ Theorem
Law of Iterated Expectations
Random Sampling and Large Sample Theory
Estimation and Hypothesis Testing
Confidence Intervals

Part II: Simple Linear Regression
Introduction to Linear Regression
Ordinary Least Squares (OLS)
Measures of Fit: R2, TSS, ESS, RSS
The Least Squares Assumptions
Sampling Distribution of OLS Estimators
Hypothesis Testing and Confidence Intervals
Regression with Binary Variables

Part III: Multiple Regression
Multiple Regression: Partial Effects
OLS Estimator for Multiple Regression
Measures of Fit: SER, RMSE, Adjusted R2

Multicollinearity and Dummy Variable Trap
Hypothesis Testing and F-Tests

Part IV: Extensions
Non-Linear Regression Models
Polynomial Regression
Logarithmic Transformations
Linear Probability Model (LPM)



EC 282: Introduction to Econometrics Spring 2026

Contents

1 Course Introduction 6
1.1 What is Econometrics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The Big Data Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Prediction vs. Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Machine Learning and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Classical Econometrics and Causation . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Course Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Course Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Software and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Grading Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Review of Probability Theory 9
2.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Types of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 The Bernoulli Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Variance and Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Two Random Variables: Joint and Marginal Distributions . . . . . . . . . . . . . . . 11

3 Conditional Probability and Related Concepts 13
3.1 Bayes’ Theorem and Conditional Probability . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Conditional Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Law of Iterated Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Random Sampling and the Sample Average 16
4.1 Population vs. Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 The Sample Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Properties of the Sample Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Large Sample Approximations 18
5.1 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Review of Statistics: Estimation 20
6.1 Estimators and Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Properties of Good Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 BLUE: Best Linear Unbiased Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Sampling Distribution Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



EC 282: Introduction to Econometrics Spring 2026

6.5 Non-Random Sampling and Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Hypothesis Testing 23
7.1 Introduction to Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Setting Up Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 The Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.4 Sample Variance and Standard Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 The Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Complete Hypothesis Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7 Types of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Confidence Intervals 26
8.1 Definition and Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Comparing Means from Two Populations 26
9.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Test Statistic for Difference in Means . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Practice Problems: Confidence Intervals and Two-Sample Tests 28

11 Introduction to Linear Regression 30
11.1 From Correlation to Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.2 Sample Statistics Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.3 The Population Regression Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.4 Two Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.5 From Population to Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 Ordinary Least Squares (OLS) 32
12.1 The OLS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.2 OLS Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.3 Interpreting the Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

13 Measures of Fit 34
13.1 Decomposition of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.2 The Coefficient of Determination (R2) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.3 Standard Error of the Regression (SER) . . . . . . . . . . . . . . . . . . . . . . . . . 35

14 Properties of OLS Residuals 36

15 The Least Squares Assumptions 38
15.1 Assumption 1: Conditional Mean Zero . . . . . . . . . . . . . . . . . . . . . . . . . . 38
15.2 What Happens When Assumption 1 Fails? . . . . . . . . . . . . . . . . . . . . . . . . 38
15.3 Proof: E[ui|Xi] = 0 ⇒ Cov(ui, Xi) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15.4 Assumption 2: Independent and Identically Distributed (i.i.d.) . . . . . . . . . . . . 39
15.5 Assumption 3: No Large Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



EC 282: Introduction to Econometrics Spring 2026

16 Sampling Distribution of OLS Estimators 41
16.1 OLS Estimators as Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 41
16.2 Properties Under the Three Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 41
16.3 Large Sample Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

17 Practice Problems: Regression 42

18 Hypothesis Testing for Regression Coefficients 43
18.1 Testing β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
18.2 Three Steps for Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

19 Confidence Intervals for Regression Coefficients 45
19.1 Confidence Interval for β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
19.2 Confidence Interval for Predicted Change . . . . . . . . . . . . . . . . . . . . . . . . 45

20 Regression with Binary Variables 46
20.1 Binary (Dummy) Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
20.2 Interpreting Binary Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

21 Introduction to Multiple Regression 49
21.1 Why Multiple Regressors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
21.2 The Problem of Omitted Variable Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 49

22 Summary of Key Formulas 50
22.1 Single Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
22.2 Two Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
22.3 Sample Mean and Large Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . 51
22.4 Estimator Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
22.5 OLS Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
22.6 Measures of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

23 Multiple Regression: Detailed Treatment 52
23.1 Omitted Variable Bias Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23.2 Addressing Omitted Variable Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
23.3 The Population Multiple Regression Function . . . . . . . . . . . . . . . . . . . . . . 53
23.4 Interpretation of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
23.5 General Multiple Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
23.6 The OLS Estimator for Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . 55
23.7 Omitted Variable Bias Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24 Measures of Fit in Multiple Regression 56
24.1 Standard Error of the Regression (SER) and RMSE . . . . . . . . . . . . . . . . . . 56
24.2 The Problem with R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
24.3 Adjusted R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25 Least Squares Assumptions for Multiple Regression 58

3



EC 282: Introduction to Econometrics Spring 2026

26 The Dummy Variable Trap 59
26.1 Including Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
26.2 The Trap: Including All Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

27 Imperfect Multicollinearity 60
27.1 Definition and Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
27.2 How to Detect Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
27.3 Variance Inflation Factor (VIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
27.4 How to Fix Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

28 Hypothesis Testing in Multiple Regression 62
28.1 Testing Individual Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

29 Test of Joint Hypotheses: The F-Test 62
29.1 Why Individual t-Tests Don’t Work for Joint Hypotheses . . . . . . . . . . . . . . . 62
29.2 The F-Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
29.3 F-Test Using R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

30 Non-Linear Regression Models 66
30.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
30.2 Two Main Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

31 Polynomial Regression 66
31.1 Interpreting Polynomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
31.2 Testing for Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

32 Logarithmic Transformations 68
32.1 Properties of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
32.2 Three Logarithmic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
32.3 Linear-Log Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
32.4 Log-Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
32.5 Log-Log Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
32.6 Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
32.7 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

33 Exact Percentage Change in Log Models 71
33.1 Deriving the Exact Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
33.2 Exact Percentage Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

34 Linear Probability Model 72
34.1 Regression with a Binary Dependent Variable . . . . . . . . . . . . . . . . . . . . . . 72
34.2 The Linear Probability Model (LPM) . . . . . . . . . . . . . . . . . . . . . . . . . . 72
34.3 Interpreting the Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . 73
34.4 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
34.5 Interpretation of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
34.6 LPM with Binary Regressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
34.7 Issues with the Linear Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . 75

4



EC 282: Introduction to Econometrics Spring 2026

Part I
Probability & Statistics Review

5



EC 282: Introduction to Econometrics Spring 2026

1 Course Introduction

1.1 What is Econometrics?

Econometrics combines economic theory, mathematics, and statistical methods to analyze eco-
nomic data. The term literally means “economic measurement”—the quantification of economic
relationships.

Key Point

Econometrics sits at the intersection of several related fields:

• Data Science: Extracting insights from data
• Statistical Learning: Building predictive models
• Machine Learning: Automated pattern recognition (supervised and unsupervised)
• Regression Analysis: Modeling relationships between variables

1.2 The Big Data Revolution

Two important technological changes have transformed how we work with data:

1. Smartphones and IoT Devices: We became capable of collecting vastly more digital
information than ever before.

2. Cloud Computing and Servers: We developed the infrastructure to store, manage, and
process massive datasets using technologies like:

• SQL databases (relational data)
• Graph databases (network/relationship data)
• Cloud storage and computing platforms

1.3 Prediction vs. Causal Inference

1.3.1 Machine Learning and Prediction

Machine learning approaches focus on prediction—forecasting outcomes based on patterns in data.
These methods can be applied in virtually any market or domain.

Example 1.1. Real estate price estimation algorithms (e.g., Zillow’s “Zestimate” or Redfin’s esti-
mates) use machine learning to predict home values based on property characteristics, location, and
market conditions. Note that these predictions are never perfect—there is always some prediction
error.

Machine learning can be categorized as:

• Supervised Learning: The algorithm learns from labeled training data (input-output pairs)

• Unsupervised Learning: The algorithm finds patterns in unlabeled data

6
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1.3.2 Classical Econometrics and Causation

Classical econometrics focuses on understanding causal relationships—not just whether X and
Y are correlated, but whether X actually causes changes in Y .

Key Point

The fundamental question in causal research: Does X cause Y , or are they merely correlated
due to some other factor?
This requires careful research design, not just sophisticated statistical techniques.

Example 1.2. COVID-19 vaccine efficacy could not be established simply by observing that vacci-
nated people had lower infection rates (correlation). The FDA required large-scale randomized
controlled trials (RCTs) to establish that vaccines actually caused reduced infection rates before
granting approval.

1.4 Course Objectives

This course provides an introduction to both predictive and causal methods:

1. Learn the basic tools of regression analysis

2. Understand the critical difference between correlation and causation

3. Develop practical programming skills for data analysis

1.5 Course Logistics

1.5.1 Software and Tools

• R and RStudio: Industry-standard statistical programming environment

• Stack Overflow: Q&A platform for programming questions

• GitHub: Version control and code sharing platform

• Supplementary resource: “Econometrics Using R”

Note

While spreadsheet programs like Excel and Access remain useful, more complex data analysis
increasingly requires programming languages like Python and R, which have become the
industry standard. Traditional statistical software (Stata, SPSS) is less commonly used in
modern data science workflows.

1.5.2 Grading Structure

High-Stakes Assessments (70%):

• 2 Midterm Exams
• 1 Final Exam
• Note: Exams do not require programming skills

7
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Low-Stakes Assessments (30%):

• 7 Homework Assignments (submitted through Blackboard)
• Graded Pass/Fail
• Group work permitted (maximum 2 students per group)
• Each student receives different datasets

8
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2 Review of Probability Theory

2.1 Random Variables

Definition 2.1 (Random Variable). A random variable is a numerical summary of a random
outcome. We typically denote random variables with capital letters (X, Y , Z) and their specific
realized values with lowercase letters (x, y, z).

Random outcomes contain two components:

1. Random component: Inherent uncertainty (e.g., coin flip)

2. Deterministic component: Systematic patterns that can be modeled

Example 2.1. Purely random: A coin flip resulting in heads or tails.
Mixed: COVID-19 infection status (Yes/No) has both random elements (chance exposure) and
deterministic elements (vaccination status, mask usage, etc.).

2.2 Types of Random Variables

2.2.1 Discrete Random Variables

Definition 2.2 (Discrete Random Variable). A random variable is discrete if it can take only a
finite or countably infinite number of distinct values.

Example 2.2. • Binary outcome: Y ∈ {0, 1} (e.g., infected or not)
• Grade points: Y ∈ {0, 0.7, 1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4}
• Count data: Number of accidents per day

2.2.2 Continuous Random Variables

Definition 2.3 (Continuous Random Variable). A random variable is continuous if it can take
any numerical value within an interval or collection of intervals.

Example 2.3. Height, weight, income, temperature, time—any measurement that can take in-
finitely many values within a range.

Note

In this course, we will primarily work with discrete random variables, though many concepts
extend naturally to the continuous case.

2.3 Probability Distributions

For a discrete random variable Y with possible outcomes {y1, y2, . . . , yk}, the probability distri-
bution assigns a probability to each outcome:

Pr(Y = y1), Pr(Y = y2), . . . , Pr(Y = yk)

Property 2.1 (Properties of Probability Distributions). For any valid probability distribution:

1. 0 ≤ Pr(Y = yi) ≤ 1 for all i

2.
k∑

i=1

Pr(Y = yi) = 1

9
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2.4 Expected Value

Definition 2.4 (Expected Value). The expected value (or mean) of a discrete random variable
Y is the long-run average value, defined as:

E[Y ] = µY =

k∑
i=1

yi · Pr(Y = yi) = y1p1 + y2p2 + · · ·+ ykpk

where pi = Pr(Y = yi).

Key Point

The expected value is a weighted average of all possible outcomes, where the weights are
the probabilities of each outcome occurring.

2.4.1 The Bernoulli Distribution

Definition 2.5 (Bernoulli Random Variable). A Bernoulli (or binary/dummy) random variable
takes only two values:

Y ∈ {0, 1}

with probabilities:

Pr(Y = 1) = p

Pr(Y = 0) = 1− p

Theorem 2.1 (Expected Value of Bernoulli). For a Bernoulli random variable:

E[Y ] = 0 · (1− p) + 1 · p = p

The expected value equals the probability of “success” (Y = 1).

Example 2.4. Let Y indicate COVID-19 infection status, where Y = 1 means infected.
If Pr(Y = 1) = 0.01 and Pr(Y = 0) = 0.99, then:

E[Y ] = 0× 0.99 + 1× 0.01 = 0.01 = p

The expected value represents the infection rate in the population.

2.5 Variance and Standard Deviation

Definition 2.6 (Variance). The variance of a random variable Y measures the weighted spread
of outcomes around the mean µY :

Var(Y ) = σ2
Y = E[(Y − µY )

2] =

k∑
i=1

(yi − µY )
2 · Pr(Y = yi)

Definition 2.7 (Standard Deviation). The standard deviation is the square root of the variance:

σY =
√

σ2
Y =

√
Var(Y )

10
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Note

We often prefer the standard deviation because it has the same unit of measurement as
the original variable Y , making it more interpretable.

Property 2.2. The variance is always non-negative: σ2
Y ≥ 0, and equals zero only when Y is

constant (not random).

Theorem 2.2 (Variance of Bernoulli). For a Bernoulli random variable with Pr(Y = 1) = p:

σ2
Y = (0− p)2(1− p) + (1− p)2p

= p2(1− p) + (1− p)2p

= p(1− p)[p+ (1− p)]

= p(1− p)

Example 2.5. For COVID-19 infection with p = 0.01:

σ2
Y = 0.01× 0.99 = 0.0099

σY =
√
0.0099 ≈ 0.0995

2.6 Two Random Variables: Joint and Marginal Distributions

When working with two discrete random variables X and Y , we need to understand how they relate
to each other.

Definition 2.8 (Marginal Distribution). The marginal distribution of X (or Y ) describes the
probability distribution of that variable alone, ignoring the other:

Pr(X = x) and Pr(Y = y)

Definition 2.9 (Joint Distribution). The joint distribution describes the probability that X
and Y simultaneously take specific values:

Pr(X = x, Y = y)

Property 2.3 (Relationship Between Joint and Marginal). The marginal distribution can be ob-
tained from the joint distribution by summing over all values of the other variable:

Pr(Y = y) =
∑
i

Pr(X = xi, Y = y)

Example 2.6 (Commute Time and Rain). Let:

• Y ∈ {0, 1} where Y = 0 is long commute, Y = 1 is short commute
• X ∈ {0, 1} where X = 0 is rain, X = 1 is no rain

Joint Distribution:

X = 0 (Rain) X = 1 (No Rain) Marginal of Y

Y = 0 (Long) 0.15 0.07 0.22
Y = 1 (Short) 0.15 0.63 0.78

Marginal of X 0.30 0.70 1.00

11
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Calculations:

Pr(Y = 0) = Pr(X = 0, Y = 0) + Pr(X = 1, Y = 0) = 0.15 + 0.07 = 0.22

Pr(Y = 1) = Pr(X = 0, Y = 1) + Pr(X = 1, Y = 1) = 0.15 + 0.63 = 0.78

Property 2.4. All joint probabilities must sum to 1:∑
i

∑
j

Pr(X = xi, Y = yj) = 1

12
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3 Conditional Probability and Related Concepts

3.1 Bayes’ Theorem and Conditional Probability

Definition 3.1 (Conditional Probability). The conditional probability of Y = y given that
X = x is:

Pr(Y = y | X = x) =
Pr(Y = y,X = x)

Pr(X = x)

This represents the probability that Y equals y, conditional on knowing that X equals x.

Theorem 3.1 (Bayes’ Theorem).

Pr(Y = y | X = x) =
Pr(X = x | Y = y) · Pr(Y = y)

Pr(X = x)

Example 3.1 (Continued: Commute and Rain). What is the probability of a short commute given
that it’s raining?

Pr(Y = 1 | X = 0) =
Pr(X = 0, Y = 1)

Pr(X = 0)
=

0.15

0.30
= 0.50

When it rains, there’s a 50% chance of a short commute.

3.2 Conditional Expected Value

Definition 3.2 (Conditional Expected Value). The conditional expected value of Y given
X = x is:

E[Y | X = x] =
∑
i

yi · Pr(Y = yi | X = x)

Example 3.2 (Rolling a Die). Consider rolling a fair six-sided die. Define:

• Y ∈ {1, 2, 3, 4, 5, 6} with Pr(Y = yi) = 1/6 for all i
• X ∈ {0, 1} where X = 0 if Y is even, X = 1 if Y is odd

Unconditional Expected Value:

E[Y ] =
6∑

i=1

yi · Pr(Y = yi) = 1 · 1
6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
=

21

6
= 3.5

Conditional Expected Value Given Odd (X = 1):

E[Y | X = 1] = 1 · 1
3
+ 3 · 1

3
+ 5 · 1

3
=

9

3
= 3

Conditional Expected Value Given Even (X = 0):

E[Y | X = 0] = 2 · 1
3
+ 4 · 1

3
+ 6 · 1

3
=

12

3
= 4

13
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3.3 Law of Iterated Expectations

Theorem 3.2 (Law of Iterated Expectations (LIE)). The unconditional expected value equals the
weighted average of conditional expected values:

E[Y ] =
∑
i

E[Y | X = xi] · Pr(X = xi)

In compact notation:
E[Y ] = E

[
E[Y | X]

]
Key Point

The Law of Iterated Expectations states that we can compute E[Y ] by:

1. Computing E[Y | X = x] for each possible value of X
2. Taking the weighted average, using Pr(X = x) as weights

Example 3.3 (Verification with Die Example). Using our die rolling example:

E[Y ] = E[Y | X = 0] · Pr(X = 0) + E[Y | X = 1] · Pr(X = 1)

= 4 · 1
2
+ 3 · 1

2
= 2 + 1.5 = 3.5✓

This matches our direct calculation of E[Y ] = 3.5.

3.4 Independence

Definition 3.3 (Statistical Independence). Two random variables X and Y are independent if
knowing the value of one provides no information about the other:

Pr(Y = y | X = x) = Pr(Y = y) for all x, y

Property 3.1 (Equivalent Characterization). X and Y are independent if and only if:

Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y) for all x, y

The joint probability equals the product of the marginal probabilities.

Note

Independence is a strong assumption. In our commute example, X (rain) and Y (commute
time) are likely not independent—rain probably affects commute time!

14
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3.5 Covariance

Definition 3.4 (Covariance). The covariance between two random variables X and Y measures
how they vary together:

Cov(X,Y ) = σXY = E
[
(X − µX)(Y − µY )

]
For discrete random variables:

σXY =
∑
i

∑
j

(xi − µX)(yj − µY ) · Pr(X = xi, Y = yj)

Property 3.2 (Interpretation of Covariance). • σXY > 0: X and Y tend to move in the same
direction

• σXY < 0: X and Y tend to move in opposite directions
• σXY = 0: No linear relationship (but not necessarily independent!)

Theorem 3.3 (Covariance of Independent Variables). If X and Y are independent, then Cov(X,Y ) =
0.

Warning: The converse is not true! Zero covariance does not imply independence.

3.6 Correlation

Definition 3.5 (Correlation Coefficient). The correlation between X and Y is the standardized
covariance:

Corr(X,Y ) = ρXY =
Cov(X,Y )

σXσY
=

σXY

σXσY

Property 3.3 (Properties of Correlation). 1. −1 ≤ ρXY ≤ 1
2. ρXY = 1: Perfect positive linear relationship
3. ρXY = −1: Perfect negative linear relationship
4. ρXY = 0: No linear relationship
5. Correlation is unitless (unlike covariance)

Key Point

Correlation measures the strength and direction of the linear relationship between two
variables. A strong nonlinear relationship might have correlation near zero!

Note

With correlation, only the direction matters, not the scale. A correlation of ρ = 0.7
indicates a positive relationship; whether the variables are measured in dollars or thousands
of dollars doesn’t change the correlation.

15
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4 Random Sampling and the Sample Average

4.1 Population vs. Sample

In most real-world applications, we cannot observe the entire population. Instead, we work with
samples to learn about population parameters.

Definition 4.1 (Population Parameters). The true characteristics of the population distribution
that we want to learn about:

• Population mean: E[Y ] = µY

• Population variance: Var(Y ) = σ2
Y

• Population standard deviation: σY
• Covariance: Cov(X,Y )
• Correlation: Corr(X,Y )

These parameters are unknown and must be estimated from sample data.

4.2 Random Sampling

Definition 4.2 (Random Sample). A random sample {Y1, Y2, . . . , Yn} consists of n observations
drawn from a population such that:

1. Each Yi is equally likely to be drawn
2. Each Yi is drawn from the same probability distribution

Definition 4.3 (IID). Random variables Y1, Y2, . . . , Yn are independently and identically dis-
tributed (i.i.d.) if:

1. Identically distributed: Each Yi comes from the same probability distribution
2. Independent: The value of any Yi provides no information about any other Yj

Random sampling ensures the i.i.d. property.

4.3 The Sample Mean

Definition 4.4 (Sample Mean). The sample mean (or sample average) of n randomly drawn
observations is:

Ȳ =
1

n

n∑
i=1

Yi =
Y1 + Y2 + · · ·+ Yn

n

Key Point

The sample mean Ȳ is itself a random variable. Every time we draw a new random sample,
we get a different value of Ȳ . This means Ȳ has its own probability distribution, expected
value, and variance.

16
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4.4 Properties of the Sample Mean

Theorem 4.1 (Expected Value of Sample Mean). If Y1, Y2, . . . , Yn are i.i.d. with E[Yi] = µY , then:

E[Ȳ ] = µY

Proof.

E[Ȳ ] = E

[
1

n

n∑
i=1

Yi

]
=

1

n
E

[
n∑

i=1

Yi

]

=
1

n
(E[Y1] + E[Y2] + · · ·+ E[Yn])

=
1

n
(µY + µY + · · ·+ µY ) =

1

n
(n · µY ) = µY

Theorem 4.2 (Variance of Sample Mean). If Y1, Y2, . . . , Yn are i.i.d. with Var(Yi) = σ2
Y , then:

Var(Ȳ ) =
σ2
Y

n

The standard deviation of Ȳ (called the standard error) is:

σȲ =
σY√
n

Proof. Because Yi and Yj are independent for i ̸= j:

Var(Ȳ ) = Var

(
1

n

n∑
i=1

Yi

)
=

1

n2
Var

(
n∑

i=1

Yi

)

=
1

n2
(Var(Y1) + Var(Y2) + · · ·+ Var(Yn))

=
1

n2
(n · σ2

Y ) =
σ2
Y

n

Note

As the sample size n increases, the variance of Ȳ decreases. This means larger samples give
us more precise estimates of the population mean.

17
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5 Large Sample Approximations

5.1 Law of Large Numbers

Theorem 5.1 (Law of Large Numbers (LLN)). Let Y1, Y2, . . . , Yn be i.i.d. random variables with
E[Yi] = µY and Var(Yi) = σ2

Y < ∞. Then as n → ∞:

Ȳ
p−→ µY

In words: the sample mean converges in probability to the population mean as the sample size
grows.

Key Point

The Law of Large Numbers tells us that Ȳ is a good approximation for µY when the sample
size n is large. The larger the sample, the closer Ȳ tends to be to µY .

5.2 Central Limit Theorem

Theorem 5.2 (Central Limit Theorem (CLT)). Let Y1, Y2, . . . , Yn be i.i.d. random variables with
E[Yi] = µY and Var(Yi) = σ2

Y < ∞. Then as n → ∞:

Ȳ
a∼ N

(
µY ,

σ2
Y

n

)
Or equivalently, the standardized sample mean converges to a standard normal:

Ȳ − µY

σY /
√
n

d−→ N(0, 1)

Key Point

The Central Limit Theorem is remarkable: regardless of the original distribution of Y ,
the sampling distribution of Ȳ is approximately normal for large n. This is why the normal
distribution is so important in statistics!

5.3 The Normal Distribution

Definition 5.1 (Normal Distribution). A random variable Y follows a normal distribution with
mean µY and variance σ2

Y , written Y ∼ N(µY , σ
2
Y ), if its probability density function is:

f(y) =
1

σY
√
2π

exp

(
−(y − µY )

2

2σ2
Y

)
Definition 5.2 (Standard Normal Distribution). The standard normal distribution is a normal
distribution with mean 0 and variance 1:

Z ∼ N(0, 1)

where E[Z] = 0 and Var(Z) = 1.

18
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Property 5.1 (Standardization). If Y ∼ N(µY , σ
2
Y ), then the standardized variable:

Z =
Y − µY

σY
∼ N(0, 1)

Property 5.2 (95% Interval for Normal Distribution). For a standard normal variable Z ∼ N(0, 1):

Pr(−1.96 ≤ Z ≤ 1.96) ≈ 0.95

This means approximately 95% of the probability mass lies within 1.96 standard deviations of the
mean.

Example 5.1. Suppose Y ∼ N(1, 4), so µY = 1 and σY = 2. Find Pr(Y ≤ 2).
Solution: Standardize to convert to the standard normal:

Pr(Y ≤ 2) = Pr

(
Y − 1

2
≤ 2− 1

2

)
= Pr(Z ≤ 0.5)

Using the standard normal table: Pr(Z ≤ 0.5) = 0.691.
For Pr(1 ≤ Y ≤ 2):

Pr(1 ≤ Y ≤ 2) = Pr(Y ≤ 2)− Pr(Y ≤ 1) = Pr(Z ≤ 0.5)− Pr(Z ≤ 0)

= 0.691− 0.50 = 0.191
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6 Review of Statistics: Estimation

6.1 Estimators and Estimates

Definition 6.1 (Estimator). An estimator is a function of sample data used to estimate an
unknown population parameter. Since it depends on random sample data, an estimator is itself a
random variable.

Common estimators include:

• Sample mean: Ȳ = 1
n

∑n
i=1 Yi

• Sample median
• Sample variance

Definition 6.2 (Estimate). An estimate is the numerical value obtained when we plug actual
sample data into an estimator. While an estimator is a random variable, an estimate is a specific
number.

Example 6.1. Suppose we want to estimate the average hourly earnings of college graduates. Let
Y be hourly earnings at the population level, with unknown mean µY .

We draw a random sample {Y1, Y2, . . . , Yn} and compute:

Ȳ =
1

n

n∑
i=1

Yi

Here Ȳ is the estimator (a formula), and the computed value (say, $25.50) is the estimate.

6.2 Properties of Good Estimators

In general, an estimator of µY is denoted µ̂Y . What makes a good estimator?

Definition 6.3 (Unbiasedness). An estimator µ̂Y is unbiased if:

E[µ̂Y ] = µY

On average, the estimator equals the true parameter value.

Definition 6.4 (Consistency). An estimator µ̂Y is consistent if:

µ̂Y
p−→ µY as n → ∞

As the sample size grows, the estimator converges to the true parameter.

Definition 6.5 (Efficiency). Between two unbiased estimators µ̂Y and µ̃Y , we prefer the one with
smaller variance. An estimator is efficient if it has the smallest variance among all unbiased
estimators.

Var(µ̂Y ) < Var(µ̃Y ) =⇒ µ̂Y is more efficient
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6.3 BLUE: Best Linear Unbiased Estimator

Theorem 6.1 (Sample Mean is BLUE). Under random sampling, the sample mean Ȳ is the Best
Linear Unbiased Estimator (BLUE) of µY :

• Linear: Ȳ = 1
n

∑n
i=1 Yi is a linear function of the observations

• Unbiased: E[Ȳ ] = µY

• Best: Ȳ has the smallest variance among all linear unbiased estimators

Note

The sample mean minimizes the sum of squared deviations. To see this, consider minimizing:
n∑

i=1

(Yi −m)2

Taking the derivative with respect to m and setting equal to zero:

d

dm

n∑
i=1

(Yi −m)2 = −2
n∑

i=1

(Yi −m) = 0

Solving:
∑n

i=1 Yi = nm, so m = 1
n

∑n
i=1 Yi = Ȳ .

6.4 Sampling Distribution Examples

Example 6.2. By the CLT, Ȳ ∼ N
(
µY ,

σ2
Y
n

)
. Given µY = 100, σ2

Y = 43, and n = 100:

Ȳ ∼ N

(
100,

43

100

)
= N(100, 0.43)

(a) Find Pr(Ȳ < 101):

Pr(Ȳ < 101) = Pr

(
Z <

101− 100√
0.43

)
= Pr(Z < 1.525) ≈ 0.936

(b) With n = 64: σ2
Ȳ
= 43/64 = 0.672

Pr(101 < Ȳ < 103) = Pr

(
101− 100√

0.672
< Z <

103− 100√
0.672

)
= Pr(1.22 < Z < 3.66) ≈ 0.111

(c) With n = 165: σ2
Ȳ
= 43/165 = 0.26

Pr(Ȳ > 98) = 1− Pr

(
Z <

98− 100√
0.26

)
≈ 1.00
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6.5 Non-Random Sampling and Selection Bias

Note

Random sampling with i.i.d. observations (Y1, Y2, . . . , Yn) is crucial for valid inference. Non-
random sampling can lead to sample selection bias:
Examples of selection bias:

• Surveying unemployment on Sundays (employed people may be less available)
• Studying cancer rates without accounting for age (survivorship bias)
• Online surveys (exclude those without internet access)

Selection bias means our sample is not representative of the population, and our estimates
may be systematically wrong.
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7 Hypothesis Testing

7.1 Introduction to Hypothesis Testing

Hypothesis testing provides a framework for making decisions about population parameters based
on sample data.
Example 7.1 (Motivating Questions). • Do vaccines work? (Is the effect different from zero?)

• Do masks reduce transmission?
• Is there a gender wage gap? A racial gap in hiring?

7.2 Setting Up Hypotheses

Definition 7.1 (Null and Alternative Hypotheses). • Null hypothesis (H0): The hypothesis
we are trying to reject. Typically states “no effect” or “no difference.”

H0 : µY = µY,0

where µY,0 is a specific hypothesized value (often 0).

• Alternative hypothesis (HA): What we believe if we reject H0.

HA : µY ̸= µY,0 (two-sided alternative)

Or one-sided: HA : µY > µY,0 or HA : µY < µY,0

7.3 The Testing Procedure

1. State the hypotheses: Define H0 and HA.

2. Collect data: Draw a random sample {Y1, Y2, . . . , Yn} and compute the sample mean Ȳ .

3. Acknowledge sampling variation: Due to randomness, Ȳ will almost never exactly equal
µY,0, even if H0 is true.

4. Assume H0 is true: Under H0, by the CLT:

Ȳ ∼ N

(
µY,0,

σ2
Y

n

)
5. Calculate the p-value: The probability of observing a sample mean at least as extreme as

what we observed, assuming H0 is true.

Definition 7.2 (P-value). The p-value is the probability of obtaining a test statistic at least as
extreme as the one observed, assuming the null hypothesis is true.

A small p-value indicates that the observed result would be unlikely if H0 were true, providing
evidence against H0.

Key Point

The p-value answers: “If the null hypothesis were true, how likely would we be to see results
this extreme (or more extreme) just by chance?”

• Small p-value (e.g., < 0.05): Evidence against H0; reject H0

• Large p-value: Insufficient evidence to reject H0
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7.4 Sample Variance and Standard Error

When the population variance σ2
Y is unknown (the typical case), we estimate it using the sample

variance.

Definition 7.3 (Sample Variance). The sample variance is:

S2
Y =

1

n− 1

n∑
i=1

(Yi − Ȳ )2

The sample standard deviation is SY =
√

S2
Y .

Note

We divide by n − 1 (not n) to obtain an unbiased estimator of σ2
Y . This is called Bessel’s

correction.

Definition 7.4 (Standard Error). The standard error of Ȳ is the estimated standard deviation
of the sampling distribution:

SE[Ȳ ] = σ̂Ȳ =
SY√
n

This serves as a proxy for the true (unknown) σȲ = σY /
√
n.

7.5 The Test Statistic

Definition 7.5 (Z-statistic (variance known)). When σ2
Y is known (rare case):

Z =
Ȳ − µY,0

σȲ
=

Ȳ − µY,0

σY /
√
n

Under H0: Z ∼ N(0, 1)

Definition 7.6 (t-statistic (variance unknown)). When σ2
Y is unknown (typical case):

t-stat =
Ȳ − µY,0

SE[Ȳ ]
=

Ȳ − µY,0

SY /
√
n

Under H0 and for large n: t-stat a∼ N(0, 1)

Definition 7.7 (P-value Calculation). For a two-sided test with test statistic t:

p-value = 2× Φ(−|t-stat|)

where Φ is the standard normal CDF.
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7.6 Complete Hypothesis Testing Procedure

1. State H0 and HA

2. Use CLT to predict the distribution of Ȳ under H0: Ȳ ∼ N(µY,0, σ
2
Y /n)

3. Calculate the sample mean Ȳ = 1
n

∑
i Yi

4. Compute the test statistic:

t-stat =
Ȳ − µY,0

SE[Ȳ ]

5. Calculate the p-value: p-value = 2Φ(−|t-stat|)

6. Compare p-value to significance level (α = 0.01, 0.05, 0.10)

7. Decision: If p-value < α, reject H0

7.7 Types of Errors

Definition 7.8 (Type I and Type II Errors). • Type I Error (False Positive): H0 is true,
but you incorrectly reject it.

• Type II Error (False Negative): H0 is false, but you fail to reject it.

Decision
Reality Fail to Reject H0 Reject H0

H0 True Correct (1− α) Type I Error (α)
H0 False Type II Error (β) Correct (Power = 1− β)

Definition 7.9 (Key Terminology). • Significance Level (α): Pre-specified probability of
Type I error (commonly 0.01, 0.05, or 0.10)

• Critical Value: Value of the test statistic at which the test rejects H0

• Rejection Region: Area where we reject H0

• Size of Test: Probability of incorrectly rejecting H0 (equals α)
• Power of Test: Probability of correctly rejecting H0 when it is false (1− β)
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8 Confidence Intervals

8.1 Definition and Construction

Definition 8.1 (Confidence Interval). A confidence interval provides a range of plausible values
for the unknown population parameter, based on sample data.

Theorem 8.1 (Confidence Interval for the Mean). A (1−α)× 100% confidence interval for µY is:

Ȳ ± zα/2 × SE[Ȳ ]

where zα/2 is the critical value from the standard normal distribution.
Common confidence intervals:

• 90% CI: Ȳ ± 1.65× SE[Ȳ ]
• 95% CI: Ȳ ± 1.96× SE[Ȳ ]
• 99% CI: Ȳ ± 2.576× SE[Ȳ ]

Example 8.1. With Ȳ = 0.61 and SE[Ȳ ] = 0.049:

95% CI = 0.61± 1.96× 0.049 = [0.51, 0.71]

Key Point

Interpretation: We are 95% confident that the true population mean µY lies within the
confidence interval.
Note: As we increase the confidence level, the interval becomes wider (more conservative but
less precise).

9 Comparing Means from Two Populations

9.1 Setup

Often we want to compare means from two different populations (e.g., men vs. women, treatment
vs. control).

Let:

• µM = population mean for group M (e.g., men)
• µW = population mean for group W (e.g., women)

Definition 9.1 (Hypotheses for Two-Sample Test).

H0 : µM − µW = d0 (often d0 = 0)
HA : µM − µW ̸= d0

9.2 Test Statistic for Difference in Means

Draw independent random samples:

• Sample from population M: ȲM with nM observations
• Sample from population W: ȲW with nW observations
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By the CLT:

ȲM ∼ N

(
µM ,

σ2
M

nM

)
, ȲW ∼ N

(
µW ,

σ2
W

nW

)
Therefore:

ȲM − ȲW ∼ N

(
µM − µW ,

σ2
M

nM
+

σ2
W

nW

)
Definition 9.2 (Standard Error for Difference in Means).

SE[ȲM − ȲW ] =

√
S2
M

nM
+

S2
W

nW

Definition 9.3 (t-statistic for Two-Sample Test).

t-stat = (ȲM − ȲW )− d0
SE[ȲM − ȲW ]

Under H0 and large n: t-stat a∼ N(0, 1)

Definition 9.4 (Confidence Interval for Difference in Means).

(ȲM − ȲW )± 1.96× SE[ȲM − ȲW ]
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10 Practice Problems: Confidence Intervals and Two-Sample Tests

Example 10.1 (Single Sample Confidence Interval). Given: n = 420, Ȳ = 646.2, SY = 19.5
(a) Construct a 95% confidence interval for µY .
Solution: First, compute the standard error:

SE[Ȳ ] =
SY√
n
=

19.5√
420

≈ 0.95

The 95% confidence interval is:

Ȳ ± 1.96× SE[Ȳ ] = 646.2± 1.96× 0.95 = [644.34, 648.06]

Example 10.2 (Two-Sample Test for Class Size Effect). (b) Compare test scores between districts
with different class sizes.

Given:

• Group 1 (small classes): Ȳ1 = 657.4, S2
Y1

= 19.4, n1 = 238
• Group 2 (large classes): Ȳ2 = 650, S2

Y2
= 17.9, n2 = 182

Difference in means:
Ȳ1 − Ȳ2 = 657.4− 650 = 7.4

Standard error of the difference:

SE[Ȳ1 − Ȳ2] =

√
S2
Y1

n1
+

S2
Y2

n2
=

√
19.4

238
+

17.9

182
= 1.828

95% Confidence Interval:

7.4± 1.96× 1.828 = [3.82, 10.98]

Hypothesis Test:

H0 : µ1 − µ2 = 0

HA : µ1 − µ2 > 0

t-statistic:
t-stat = 7.4− 0

1.828
= 4.05

Conclusion: Reject the null hypothesis. Districts with smaller classes have significantly better
outcomes.

Example 10.3 (Another Two-Sample Comparison). Given:

• Ȳ1 = 3178.832, SY1 = 580.0068
• Ȳ2 = 3432.06, SY2 = 584.622
• Ȳ1 − Ȳ2 = −253.2284

Standard error:

SE[Ȳ1 − Ȳ2] =

√
S2
Y1

n1
+

S2
Y2

n2
= 28.82106

t-statistic:
t-stat = −253.2284

28.82106
= −8.79

The p-value ≈ 0, so we reject the null hypothesis of no difference.
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Part II
Simple Linear Regression
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11 Introduction to Linear Regression

11.1 From Correlation to Regression

We have established that the sample correlation rXY measures the strength of the linear associ-
ation between X and Y . However, correlation has limitations:

• Correlation does not imply causation
• Correlation only shows the strength of association, not the nature of the relationship

Key Point

Regression analysis allows us to:

1. Quantify the relationship between variables
2. Make predictions
3. (Under certain conditions) Make causal inferences

11.2 Sample Statistics Review

Before diving into regression, let’s review the sample statistics we’ll need.

Definition 11.1 (Sample Covariance).

SXY =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

Definition 11.2 (Sample Variance).

S2
X =

∑n
i=1(Xi − X̄)2

n− 1

Definition 11.3 (Sample Correlation).

rXY =
SXY

SXSY

where −1 ≤ rXY ≤ 1. This tells us how much X and Y are related.

11.3 The Population Regression Function

Definition 11.4 (Population Regression Model). The population regression function describes
the relationship between Y and X in the entire population:

Yi = β0 + β1Xi + ui

where:

• Yi = dependent variable (outcome, response, left-hand-side variable)
• Xi = independent variable (regressor, right-hand-side variable)
• β0 = intercept (population parameter)
• β1 = slope (population parameter)
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• ui = error term (unobserved factors affecting Y )
• i = 1, 2, . . . , n indexes observations

Note

The term β0+β1Xi is called the population regression line. It represents the systematic
(predictable) component of Y , while ui captures everything else—the “leftover” or unex-
plained variation.

11.4 Two Main Challenges

When working with regression, we face two fundamental problems:

1. We don’t observe the population: We only have access to random samples, not the entire
population. The population parameters β0 and β1 are unknown.

2. Which line should we fit?: Given sample data, how do we choose the “best” line to
estimate the population regression?

11.5 From Population to Sample

Definition 11.5 (Sample Regression Model). Given a random sample of n observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn),
we estimate:

Yi = β̂0 + β̂1Xi + ûi

where:

• β̂0, β̂1 are estimated coefficients (from the sample)
• ûi is the residual (sample analog of the error term)

Key Point

Error term (ui) vs. Residual (ûi):

• ui = population error (unobservable)
• ûi = residual (observable, computed from sample)

Definition 11.6 (Predicted (Fitted) Value). The predicted value of Y for observation i is:

Ŷi = β̂0 + β̂1Xi

This is the value of Y predicted by our estimated regression line.

Property 11.1 (Decomposition of Observed Value). Each observed Yi can be decomposed as:

Yi = Ŷi + ûi = β̂0 + β̂1Xi︸ ︷︷ ︸
predicted

+ ûi︸︷︷︸
residual
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12 Ordinary Least Squares (OLS)

12.1 The OLS Problem

How do we choose β̂0 and β̂1? We want to minimize the prediction errors.

Definition 12.1 (OLS Criterion). Ordinary Least Squares (OLS) chooses β̂0 and β̂1 to mini-
mize the sum of squared residuals (SSR):

min
β̂0,β̂1

n∑
i=1

û2i = min
β̂0,β̂1

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2

Note

Why minimize squared residuals?

• Squaring ensures all errors are positive (large negative errors are as bad as large positive
ones)

• Squaring penalizes larger errors more heavily
• The math works out nicely (differentiable, unique solution)

12.2 OLS Formulas

Taking derivatives and setting them to zero yields the OLS estimators:

Theorem 12.1 (OLS Estimators).

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
=

SXY

S2
X

β̂0 = Ȳ − β̂1X̄

Key Point

Everything in these formulas is observable—we can compute β̂0 and β̂1 directly from our
sample data.

12.3 Interpreting the Coefficients

Property 12.1 (Interpretation of β̂1). Consider two observations with X values differing by ∆X:

Yi = β̂0 + β̂1Xi + ûi

Yi +∆Y = β̂0 + β̂1(Xi +∆X) + ûi

Subtracting:
∆Y = β̂1∆X ⇒ β̂1 =

∆Y

∆X

Interpretation: β̂1 is the predicted change in Y associated with a one-unit increase in X.

32



EC 282: Introduction to Econometrics Spring 2026

Property 12.2 (Interpretation of β̂0). From β̂0 = Ȳ − β̂1X̄:

β̂0 = Ȳ when X̄ = 0

β̂0 is the predicted value of Y when X = 0.
Caution: Sometimes this interpretation makes sense (e.g., baseline value), but often X = 0 is

outside the range of the data or meaningless.

Example 12.1 (Test Scores and Class Size). Suppose we estimate:

̂TestScore = 698.9− 2.28× ClassSize

Interpretation of β̂1 = −2.28: A one-student increase in class size is associated with a 2.28-
point decrease in test scores.

Is this effect large or small?
Compare to the outcome’s scale:

• As percentage of mean: 2.28
698.9 ≈ 0.33%

• In standard deviation units: If SY = 19, then 2.28
19 ≈ 0.12 SD

Prediction: If class size is 24 students:

Ŷ = 698.9− 2.28(24) = 644.18
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13 Measures of Fit
How well does our regression line fit the data? We need measures to assess the “goodness of fit.”

13.1 Decomposition of Variance

Definition 13.1 (Total Sum of Squares (TSS)). The total sum of squares measures the total
variation in Y :

TSS =
n∑

i=1

(Yi − Ȳ )2

Definition 13.2 (Residual Sum of Squares (RSS/SSR)). The residual sum of squares measures
the unexplained variation:

RSS =
n∑

i=1

û2i =
n∑

i=1

(Yi − Ŷi)
2

This is what OLS minimizes.

Definition 13.3 (Explained Sum of Squares (ESS)). The explained sum of squares measures
variation explained by the regression:

ESS =
n∑

i=1

(Ŷi − Ȳ )2

Theorem 13.1 (Variance Decomposition).

TSS = ESS +RSS

Total variation = Explained variation + Unexplained variation

13.2 The Coefficient of Determination (R2)

Definition 13.4 (R2). The coefficient of determination is the fraction of variance in Y ex-
plained by X:

R2 =
ESS

TSS
= 1− RSS

TSS

Property 13.1 (Properties of R2). • 0 ≤ R2 ≤ 1
• R2 = 0: X explains none of the variation in Y
• R2 = 1: X explains all the variation in Y (perfect fit)
• In simple regression: R2 = r2XY (squared correlation)

Key Point

R2 tells us what share of the variation in Y is explained by the variation in X.
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13.3 Standard Error of the Regression (SER)

Definition 13.5 (Standard Error of the Regression). The SER measures the typical size of the
residuals:

SER =

√√√√ 1

n− 2

n∑
i=1

û2i =

√
RSS

n− 2

We divide by n− 2 because we estimated two parameters (β̂0 and β̂1).
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14 Properties of OLS Residuals
OLS has several important algebraic properties that hold by construction.

Property 14.1 (Property 1: Mean of Residuals is Zero).

1

n

n∑
i=1

ûi = 0

The sample average of OLS residuals is always zero.

Proof. Recall ûi = Yi − β̂0 − β̂1Xi and β̂0 = Ȳ − β̂1X̄.
Substituting:

ûi = Yi − Ȳ + β̂1X̄ − β̂1Xi = (Yi − Ȳ )− β̂1(Xi − X̄)

Summing over all observations:
n∑

i=1

ûi =

n∑
i=1

(Yi − Ȳ )︸ ︷︷ ︸
=0

−β̂1

n∑
i=1

(Xi − X̄)︸ ︷︷ ︸
=0

= 0

Property 14.2 (Property 2: Mean of Predicted Values Equals Mean of Y ).

1

n

n∑
i=1

Ŷi = Ȳ

Proof. Since Yi = Ŷi + ûi:
n∑

i=1

Yi =

n∑
i=1

Ŷi +

n∑
i=1

ûi =

n∑
i=1

Ŷi + 0

Therefore nȲ =
∑n

i=1 Ŷi, so 1
n

∑n
i=1 Ŷi = Ȳ .

Property 14.3 (Property 3: Residuals are Uncorrelated with X).
n∑

i=1

ûiXi =
n∑

i=1

ûi(Xi − X̄) = 0

Proof.
n∑

i=1

ûiXi =

n∑
i=1

[
(Yi − Ȳ )− β̂1(Xi − X̄)

]
(Xi − X̄)

=

n∑
i=1

(Yi − Ȳ )(Xi − X̄)− β̂1

n∑
i=1

(Xi − X̄)2

By the definition of β̂1:

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

Substituting:
n∑

i=1

ûiXi =

n∑
i=1

(Yi − Ȳ )(Xi − X̄)−
n∑

i=1

(Yi − Ȳ )(Xi − X̄) = 0
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Property 14.4 (Property 4: TSS = ESS + RSS).

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

(Ŷi − Ȳ )2 +

n∑
i=1

û2i

Proof. Write Yi − Ȳ = (Yi − Ŷi) + (Ŷi − Ȳ ) = ûi + (Ŷi − Ȳ ).
Squaring and summing:

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

û2i +

n∑
i=1

(Ŷi − Ȳ )2 + 2

n∑
i=1

ûi(Ŷi − Ȳ )

The cross-term vanishes:
n∑

i=1

ûiŶi =

n∑
i=1

ûi(β̂0 + β̂1Xi)

= β̂0

n∑
i=1

ûi︸ ︷︷ ︸
=0

+β̂1

n∑
i=1

ûiXi︸ ︷︷ ︸
=0

= 0

Therefore TSS = RSS + ESS.

Key Point

These properties are algebraic facts that hold for any OLS regression—they follow directly
from how OLS is constructed, not from any assumptions about the data.
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15 The Least Squares Assumptions

When are β̂0 and β̂1 “good” estimators of the population parameters β0 and β1? We need certain
assumptions to hold.

15.1 Assumption 1: Conditional Mean Zero

Definition 15.1 (Assumption 1: Conditional Mean Independence). The conditional distribution
of ui given Xi has mean zero:

E[ui | Xi] = 0

This is equivalent to:
Corr(ui, Xi) = 0

Key Point

This assumption says: at any given value of X, the errors u average out to zero. The error
term is not systematically related to the independent variable.
If E[ui | Xi] = 0, then the OLS estimators are unbiased:

E[β̂0] = β0 and E[β̂1] = β1

Note

Graphical interpretation: At any value of X, the distribution of Y is centered on the
population regression line β0+β1X. Sometimes we overpredict, sometimes we underpredict,
but on average the error is zero.

15.2 What Happens When Assumption 1 Fails?

Example 15.1 (Test Scores and Class Size). Consider regressing test scores on student-to-teacher
ratio (STR):

TestScorei = β0 + β1 × STRi + ui

What’s in the error term ui? Everything else that affects test scores:

• Poverty level
• Parental education
• School funding
• Teacher quality
• etc.

Problem: If Corr(Poverty, STR) > 0 (poorer districts have larger class sizes), then:

Corr(ui, Xi) ̸= 0

and Assumption 1 is violated!

Definition 15.2 (Omitted Variable Bias). When a variable that affects Y is:

1. Omitted from the regression, AND
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2. Correlated with the included variable X

the OLS estimator is biased. This is called omitted variable bias.

Key Point

When Assumption 1 fails:

• The estimated regression line is biased
• We systematically over- or under-predict
• The slope β̂1 does NOT have a causal interpretation
• We can only interpret the relationship as association, not causation

15.3 Proof: E[ui|Xi] = 0 ⇒ Cov(ui, Xi) = 0

Proof. Recall the definition of covariance:

Cov(X,u) = E[(X − E[X])(u− E[u])]

Expanding:

Cov(X,u) = E[Xu−XE[u]− E[X]u+ E[X]E[u]]

= E[Xu]− E[X]E[u]− E[X]E[u] + E[X]E[u]

= E[Xu]− E[X]E[u]

Using the Law of Iterated Expectations:

E[Xu] = E[E[Xu | X]] = E[X · E[u | X]]

If E[u | X] = 0:
E[Xu] = E[X · 0] = 0

Also, by the Law of Iterated Expectations:

E[u] = E[E[u | X]] = E[0] = 0

Therefore:
Cov(X,u) = E[Xu]− E[X]E[u] = 0− E[X] · 0 = 0

15.4 Assumption 2: Independent and Identically Distributed (i.i.d.)

Definition 15.3 (Assumption 2: i.i.d. Sampling). The observations (Xi, Yi) for i = 1, 2, . . . , n are
independently and identically distributed (i.i.d.).

Note

This assumption is ensured by random sampling:

• Identically distributed: All observations come from the same popula-
tion/probability distribution

• Independent: Draws have no memory—knowing one observation tells you nothing
about another
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15.5 Assumption 3: No Large Outliers

Definition 15.4 (Assumption 3: Finite Fourth Moments). Large outliers are unlikely. Technically:
X and Y have finite fourth moments (kurtosis exists).

E[X4] < ∞ and E[Y 4] < ∞

Note

This is a technical assumption needed for:

• The Law of Large Numbers to apply
• The Central Limit Theorem to work
• OLS to be consistent

OLS can be misleading if there are large outliers in the data.
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16 Sampling Distribution of OLS Estimators

16.1 OLS Estimators as Random Variables

Just like the sample mean Ȳ , the OLS estimators β̂0 and β̂1 are random variables. Each time
we draw a new random sample, we get different estimates.

16.2 Properties Under the Three Assumptions

Theorem 16.1 (Unbiasedness of OLS). If Assumptions 1–3 hold, then the OLS estimators are
unbiased:

E[β̂0] = β0 and E[β̂1] = β1

Theorem 16.2 (Consistency of OLS). If Assumptions 1–3 hold, then as n → ∞:

β̂0
p−→ β0 and β̂1

p−→ β1

The OLS estimators are consistent.

16.3 Large Sample Distribution

Theorem 16.3 (Large Sample Distribution of OLS). If Assumptions 1–3 hold, then for large
samples, by the Central Limit Theorem:

β̂1
a∼ N

(
β1, σ

2
β̂1

)
where the variance of β̂1 is:

σ2
β̂1

=
1

n
· Var[(Xi − µX)ui]

[Var(Xi)]2

Similarly:
β̂0

a∼ N
(
β0, σ

2
β̂0

)
Key Point

What affects the precision of β̂1?
The variance σ2

β̂1
is:

• Smaller when n is larger (more data = more precision)
• Smaller when Var(Xi) is larger (more spread in X = better estimates)
• Larger when Var(ui) is larger (more noise = less precision)

Note

Intuition for Var(X): If all your X values are clustered together, it’s hard to estimate the
slope. You need variation in X to trace out the regression line.
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17 Practice Problems: Regression

Example 17.1 (Birth Weight Regression). Regression of birth weight (Y ) on number of cigarettes
smoked during pregnancy (X):

Ŷi = β̂0 + β̂1Xi

Given: β̂0 = 509.384, β̂1 = −5.614, and Xi = 22 cigarettes.
(a) Predict birth weight when mother smokes 22 cigarettes:

Ŷi = 509.384− 5.614× 22 = 509.384− 123.508 = 385.9 grams

(b) If cigarette consumption changes by ∆X = 23− 19 = 4:

∆Ŷ = β̂1 ×∆X = −5.614× 4 = −22.5 grams

A 4-cigarette increase is associated with a 22.5 gram decrease in birth weight.
(c) Find the average outcome Ȳ if X̄ = 21: Using β̂0 = Ȳ − β̂1X̄:

Ȳ = β̂0 + β̂1X̄ = 509.384− 5.614× 21 = 391.5 grams
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18 Hypothesis Testing for Regression Coefficients

18.1 Testing β1

We often want to test whether the slope coefficient is statistically significant—that is, whether X
has a real effect on Y .

Definition 18.1 (Hypotheses About β1). Most common case (two-sided test):

H0 : β1 = 0 (no relationship between X and Y )
HA : β1 ̸= 0 (there is a relationship)

General case:

H0 : β1 = β1,0

HA : β1 ̸= β1,0

where β1,0 is some hypothesized value.

18.2 Three Steps for Hypothesis Testing

1. Step 1: Compute the Standard Error

SE(β̂1) =
√

σ̂2
β̂1

where the estimated variance is:

σ̂2
β̂1

=
1

n
×

1
n−2

∑n
i=1(Xi − X̄)2û2i[

1
n

∑n
i=1(Xi − X̄)2

]2
2. Step 2: Calculate the t-statistic

t-stat = β̂1 − β1,0

SE(β̂1)

3. Step 3: Compute the p-value
For a two-sided test:

p-value = Pr
H0

(
|t| > |tact|

)
= 2Φ(−|tact|)

For a one-sided test (HA : β1 < 0):

p-value = Φ(tact)

Key Point

Decision Rule: Reject H0 if the p-value is less than the pre-specified significance level α
(typically 1%, 5%, or 10%).
Critical values for two-sided tests:

• 1% level: |t| > 2.576
• 5% level: |t| > 1.96
• 10% level: |t| > 1.645
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Example 18.1 (Testing Significance of Birth Weight Regression). Given: β̂1 = −5.614, SE(β̂1) =
1.862

Test H0 : β1 = 0 vs. HA : β1 ̸= 0
Step 1: SE(β̂1) = 1.862 (given)
Step 2: t-statistic:

t-stat = −5.614− 0

1.862
= −3.015

Step 3: p-value (two-sided):

p-value = 2Φ(−| − 3.015|) = 2Φ(−3.015) ≈ 0.0026

Since p-value < 0.01, we reject H0 at the 1% significance level. There is strong evidence that
cigarette smoking affects birth weight.

Example 18.2 (One-Sided Test). For the same regression, test H0 : β1 = 0 vs. HA : β1 < 0
The t-statistic is still −3.015.
For a one-sided test:

p-value = Φ(−3.015) ≈ 0.0013

We reject H0—there is strong evidence that smoking decreases birth weight.

Note

Testing hypotheses about the intercept β0 is rare and often not meaningful. Always include
an intercept in your regression, even if you fail to reject H0 : β0 = 0.
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19 Confidence Intervals for Regression Coefficients

19.1 Confidence Interval for β1

Definition 19.1 (Two Interpretations). A 95% confidence interval for β1 is:

1. The set of values that cannot be rejected using a two-sided hypothesis test at the 5% level
2. In 95% of all possible samples, the interval will contain the true value of β1

Theorem 19.1 (Confidence Interval Formula). A (1− α)× 100% confidence interval for β1 is:

β̂1 ± zα/2 × SE(β̂1)

Common intervals:

• 90% CI: β̂1 ± 1.645× SE(β̂1)
• 95% CI: β̂1 ± 1.96× SE(β̂1)
• 99% CI: β̂1 ± 2.576× SE(β̂1)

Example 19.1. With β̂1 = −5.614 and SE(β̂1) = 1.862:
99% Confidence Interval:

−5.614± 2.576× 1.862 = [−10.41,−0.82]

Interpretation: We are 99% confident that the true effect of one additional cigarette on birth
weight is between −10.41 and −0.82 grams.

19.2 Confidence Interval for Predicted Change

Definition 19.2 (Confidence Interval for β1 ·∆X). When X changes by ∆X, the predicted change
in Y is ∆Y = β1 ·∆X.

A 95% CI for this predicted change is:

∆X ×
[
β̂1 ± 1.96× SE(β̂1)

]
Example 19.2. If a mother reduces smoking by 2 cigarettes (∆X = −2):

99% CI for the effect on birth weight:

(−2)× [−10.41,−0.82] = [1.64, 20.82] grams

We are 99% confident that reducing smoking by 2 cigarettes increases birth weight by between
1.64 and 20.82 grams.
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20 Regression with Binary Variables

20.1 Binary (Dummy) Variables

One of the most common cases in regression is when the independent variable is binary.

Definition 20.1 (Binary/Dummy Variable). A binary (or dummy, indicator) variable takes
only two values:

Di ∈ {0, 1}

Examples:

• Gender: Male = 1, Female = 0
• Education: BA degree = 1, No BA = 0
• Treatment: Treated = 1, Control = 0
• Class size: Small (STR < 20) = 1, Large (STR ≥ 20) = 0

20.2 Interpreting Binary Regression

Consider the regression:
Yi = β0 + β1Di + ui

Property 20.1 (Interpretation of Coefficients). When Di = 0:

Yi = β0 + ui ⇒ E[Yi|Di = 0] = β0

When Di = 1:
Yi = β0 + β1 + ui ⇒ E[Yi|Di = 1] = β0 + β1

Therefore:
β1 = E[Yi|Di = 1]− E[Yi|Di = 0]

β1 is the difference in population means between the two groups!

Key Point

In OLS with a binary regressor:

• β̂0 = sample mean of Y for the group where D = 0
• β̂1 = difference in sample means: ȲD=1 − ȲD=0

This is exactly the two-sample comparison we studied earlier!

Example 20.1 (Test Scores and Class Size). Let Di = 1 if district i has small classes (STR < 20),
and Di = 0 otherwise.

Regression result:
̂TestScorei = 369.92 + 44.45×Di

Interpretation:

• β̂0 = 369.92: Average test score in districts with large classes
• β̂0 + β̂1 = 369.92 + 44.45 = 414.37: Average test score in districts with small classes
• β̂1 = 44.45: Difference in average scores (small − large)
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95% Confidence Interval (given SE(β̂1) = 22.19):

44.45± 1.96× 22.19 = [0.96, 87.94]

Since the CI does not include zero, the difference is statistically significant at the 5% level.
t-statistic:

t =
44.45− 0

22.19
= 2.003
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Part III
Multiple Regression
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21 Introduction to Multiple Regression

21.1 Why Multiple Regressors?

So far, we’ve studied simple regression with one independent variable:

Yi = β0 + β1Xi + ui

But what if other factors affect Y ? We need multiple regression:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui

21.2 The Problem of Omitted Variable Bias

Example 21.1 (Class Size and Test Scores in California). Consider regressing test scores on
student-to-teacher ratio (STR):

TestScorei = β0 + β1 × STRi + ui

California has a large immigrant population. Districts with more English learners may:

1. Perform worse on English tests (direct effect)
2. Have larger class sizes (correlation with STR)

If we omit “% English Learners” from the regression, we attribute its effect to STR!

Definition 21.1 (Omitted Variable Bias (Formal)). Omitted variable bias occurs when:

1. An omitted variable affects the outcome Y

2. The omitted variable is correlated with an included regressor X

Both conditions must hold for bias to occur.

Key Point

When omitted variable bias is present:

• E[β̂1] ̸= β1 (the estimator is biased)
• The estimated relationship may be driven by the omitted factor
• The true relationship might be weaker, stronger, or even opposite in sign
• We cannot give β̂1 a causal interpretation

Solution: Include the omitted variable in the regression (if possible).

Note

In the California schools example:

• If districts with large classes have more English learners
• And English learners score lower on tests
• Then β̂1 will be more negative than the true effect of class size
• We’re incorrectly attributing the “English learner effect” to class size
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22 Summary of Key Formulas

22.1 Single Random Variable

Concept Formula

Expected Value E[Y ] = µY =
∑
i

yi · Pr(Y = yi)

Variance Var(Y ) = σ2
Y =

∑
i

(yi − µY )
2 · Pr(Y = yi)

Standard Deviation σY =
√
σ2
Y

Bernoulli Mean E[Y ] = p

Bernoulli Variance Var(Y ) = p(1− p)

22.2 Two Random Variables

Concept Formula

Conditional Probability Pr(Y = y | X = x) =
Pr(X = x, Y = y)

Pr(X = x)

Conditional Expectation E[Y | X = x] =
∑
i

yi · Pr(Y = yi | X = x)

Law of Iterated Expectations E[Y ] = E[E[Y | X]]

Independence Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y)

Covariance Cov(X,Y ) = E[(X − µX)(Y − µY )]

Correlation ρXY =
Cov(X,Y )

σXσY
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22.3 Sample Mean and Large Sample Results

Concept Formula

Sample Mean Ȳ =
1

n

n∑
i=1

Yi

Expected Value of Ȳ E[Ȳ ] = µY

Variance of Ȳ Var(Ȳ ) =
σ2
Y

n

Standard Error σȲ =
σY√
n

Law of Large Numbers Ȳ
p−→ µY as n → ∞

Central Limit Theorem Ȳ
a∼ N

(
µY ,

σ2
Y

n

)
Standardization Z =

Y − µY

σY
∼ N(0, 1)

22.4 Estimator Properties

Property Definition

Unbiased E[µ̂Y ] = µY

Consistent µ̂Y
p−→ µY as n → ∞

Efficient Smallest variance among unbiased estimators

BLUE Best Linear Unbiased Estimator
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22.5 OLS Regression

Concept Formula

Population Regression Yi = β0 + β1Xi + ui

Sample Regression Yi = β̂0 + β̂1Xi + ûi

OLS Slope β̂1 =

∑
i(Xi − X̄)(Yi − Ȳ )∑

i(Xi − X̄)2
=

SXY

S2
X

OLS Intercept β̂0 = Ȳ − β̂1X̄

Predicted Value Ŷi = β̂0 + β̂1Xi

Residual ûi = Yi − Ŷi

22.6 Measures of Fit

Concept Formula

Total Sum of Squares TSS =
∑
i

(Yi − Ȳ )2

Residual Sum of Squares RSS =
∑
i

û2i

Explained Sum of Squares ESS =
∑
i

(Ŷi − Ȳ )2

Variance Decomposition TSS = ESS +RSS

R2 R2 =
ESS

TSS
= 1− RSS

TSS

Standard Error of Regression SER =

√
RSS

n− 2

23 Multiple Regression: Detailed Treatment

23.1 Omitted Variable Bias Revisited

When the conditional mean independence assumption E[ui|Xi] = 0 fails, we have:

E[ui|Xi] ̸= 0 ⇒ Corr(ui, Xi) ̸= 0

The correlation between the regressor and the error term is denoted:

Corr(Xi, ui) = ρXu
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Theorem 23.1 (Expected Value of β̂1 with OVB). When there is correlation between the regressor
and the error:

E[β̂1] = β1 + ρXu · σu
σX

The term ρXu · σu
σX

represents the bias due to the omitted variable.
Meanwhile, the intercept estimator remains unbiased: E[β̂0] = β0.

Key Point

Key facts about omitted variable bias:

1. Larger sample size will NOT help — OVB is a systematic bias that does not
diminish with more data

2. The magnitude of bias depends on:

• Corr(ui, Xi) — correlation between error and regressor
• Corr(Xi, Yi) — correlation between regressor and outcome

3. The larger the correlations, the larger the bias

4. The direction of bias depends on the three-way relationship between X1i (included),
X2i (omitted), and Yi (outcome)

23.2 Addressing Omitted Variable Bias

Strategy: Measure the impact of X1 (e.g., student-teacher ratio) on the outcome Y while holding
X2 (e.g., % of English learners) constant.

Idea: Compare outcomes among observations with similar values of the potentially omitted
variable.

Example 23.1 (Class Size and Test Scores). To estimate the effect of class size on test scores
without bias from English learner proportions:

• Compare small vs. large classes among districts with similar % of English learners

• This “controls for” the confounding variable

This motivates the multiple regression model, which allows us to estimate the impact of X1

on Y while holding X2 constant.

23.3 The Population Multiple Regression Function

Definition 23.1 (Multiple Regression Model with Two Regressors). The population regression
model with two explanatory variables is:

Yi = β0 + β1X1i + β2X2i + ui

where:

• Yi is the dependent variable (outcome)
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• X1i is the primary regressor of interest

• X2i is the control variable

• ui is the error term — the part of Yi that cannot be explained by X1i and X2i

Definition 23.2 (Conditional Expectation Function). The conditional expectation of Y given
specific values of both regressors:

E[Yi|X1i = x1, X2i = x2] = β0 + β1x1 + β2x2

This gives the population average of test scores for districts with student-teacher ratio x1 and
% of English learners x2.

23.4 Interpretation of Coefficients

Definition 23.3 (Coefficient Interpretation). In the model Yi = β0 + β1X1i + β2X2i + ui:

• β0 = intercept: E[Y |X1 = 0, X2 = 0] — population average when both regressors equal zero

• β1 = slope coefficient for X1: the change in Y induced by a one-unit change in X1, holding
X2 constant

• β2 = slope coefficient for X2: the change in Y induced by a one-unit change in X2, holding
X1 constant

Theorem 23.2 (Partial Effect / Ceteris Paribus Interpretation). The coefficient β1 represents the
partial effect of X1 on Y :

β1 =
∆Y

∆X1
(holding X2 constant)

Derivation:

Y = β0 + β1X1 + β2X2

Y +∆Y = β0 + β1(X1 +∆X1) + β2X2

∆Y = β1∆X1

Therefore: β1 =
∆Y
∆X1

Equivalent phrases for “holding X2 constant”:

• “After accounting for X2”

• “After controlling for X2”

• “Ceteris paribus” (all else equal)
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23.5 General Multiple Regression Model

Definition 23.4 (Multiple Regression with k Regressors). The general population multiple regres-
sion model:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui

for i = 1, 2, . . . , n
Alternative notation using a constant regressor:

Yi = β0X0i + β1X1i + β2X2i + · · ·+ βkXki + ui

where X0i ≡ 1 for all i (constant term/regressor).
The conditional expectation:

E[Yi|X1i = x1, X2i = x2, . . . , Xki = xk] = β0 + β1x1 + β2x2 + · · ·+ βkxk

Definition 23.5 (Interpretation of βj in General Model). The coefficient βj represents:

βj =
∆Y

∆Xj
(holding all other X’s constant)

This is the change in Y induced by a one-unit change in Xj , holding all else constant.

23.6 The OLS Estimator for Multiple Regression

Definition 23.6 (OLS Objective in Multiple Regression). Given the model:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui

Objective: Find β̂0, β̂1, β̂2, . . . , β̂k (a total of k + 1 parameters) that minimize the sum of
squared residuals.

The fitted values and residuals:

Ŷi = β̂0 + β̂1X1i + β̂2X2i + · · ·+ β̂kXki

ûi = Yi − Ŷi

Theorem 23.3 (OLS Minimization Problem). The OLS estimators are found by minimizing:

min
β̂0,β̂1,...,β̂k

n∑
i=1

û2i = min

n∑
i=1

(Yi − Ŷi)
2

This minimizes the Sum of Squared Residuals (SSR), also called Residual Sum of Squares (RSS).

Note

The OLS estimates are found by solving k + 1 simultaneous equations (the first-order con-
ditions). While we derived explicit formulas for simple regression, in multiple regression the
solution typically requires matrix algebra.
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23.7 Omitted Variable Bias Formula

Example 23.2 (Numerical Example of OVB). Consider the true model:

Model 1 (True): Yi = β0 + β1X1i + β2X2i + ui

But we estimate the misspecified model (omitting X2):

Model 2 (Estimated): Yi = β̃0 + β̃1X1i + ũi

Also consider the auxiliary regression:

X2i = α0 + α1X1i + εi

Suppose we obtain these estimates:

β̃1 = −2.6210 (from Model 2 — biased)
β̂1 = −1.28970 (from Model 1 — unbiased)
β̂2 = −0.73403

α̂1 = 1.8137

OVB Formula:
β̃1 = β̂1 + β̂2 × α̂1

Verification:

−2.6210 = −1.28970 + (−0.73403)(1.8137) = −1.28970− 1.33 = −2.6210 ✓

The bias is β̂2 × α̂1 ≈ −1.33.

Key Point

Intuition: Districts with a high % of English learners tend to have not only lower test scores
but also a high student-teacher ratio. When we omit English learners from the regression,
the estimated coefficient on class size captures both effects, leading to a larger (in absolute
value) estimated coefficient.

24 Measures of Fit in Multiple Regression

24.1 Standard Error of the Regression (SER) and RMSE

Both SER and RMSE measure the spread of Yi around Ŷi (the average distance between observed
values and the regression line predictions).

Definition 24.1 (Standard Error of the Regression).

SER =

√√√√ 1

n− k − 1

n∑
i=1

û2i =

√
SSR

n− k − 1

where k is the number of independent variables (regressors, not counting the constant).
The denominator n− k − 1 represents the degrees of freedom.
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Definition 24.2 (Root Mean Squared Error).

RMSE =

√√√√ 1

n

n∑
i=1

û2i =

√
SSR

n

Note

Key properties of SER and RMSE:

• Both are measured in the same units as the dependent variable Y

• They represent the “average prediction error” — the typical distance between observed
and fitted values

• When n is large, SER and RMSE are close to each other

• Since Yi = Ŷi + ûi, the residual ûi represents the prediction error

24.2 The Problem with R2

Recall the definition:
R2 =

ESS

TSS
= 1− SSR

TSS

where:

ESS =
∑
i

(Ŷi − Ȳ )2 (Explained Sum of Squares)

TSS =
∑
i

(Yi − Ȳ )2 (Total Sum of Squares)

SSR =
∑
i

û2i (Sum of Squared Residuals)

Problem: Every time you add a new variable, R2 will increase (or at worst stay the same),
regardless of whether that variable is actually useful for explaining Y .

Decomposition: TSS = ESS + SSR

24.3 Adjusted R2

Definition 24.3 (Adjusted R2). The adjusted R2 penalizes for adding regressors:

R̄2 = 1− n− 1

n− k − 1
· SSR
TSS

Compare to the regular R2:
R2 = 1− SSR

TSS

The factor n−1
n−k−1 penalizes for each additional regressor.

Theorem 24.1 (Properties of Adjusted R2). 1. Since n−1
n−k−1 > 1 (when k ≥ 1), we always have

R̄2 ≤ R2
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2. As n → ∞, R̄2 → R2 (they converge for large samples)

3. Unlike R2, the adjusted R̄2 can be negative (theoretically)

4. R̄2 can decrease when adding a variable that doesn’t improve fit enough to justify the penalty

25 Least Squares Assumptions for Multiple Regression
For the model:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui, i = 1, . . . , n

Definition 25.1 (LS Assumption 1: Conditional Mean Zero).

E[ui|X1i = x1, X2i = x2, . . . , Xki = xk] = 0

The conditional distribution of ui given all regressors has mean zero.
Implications:

• No omitted variable bias

• Two conditions that would cause OVB:

1. Corr(ui, Xj) ̸= 0 for some included regressor
2. The omitted variable affects Yi

Definition 25.2 (LS Assumption 2: Random Sampling (i.i.d.)).

(X1i, X2i, . . . , Xki, Yi) are i.i.d.

The observations are independently and identically distributed.
This assumption is automatically satisfied with a random sample from the population.

Definition 25.3 (LS Assumption 3: No Large Outliers). Large outliers are unlikely.
How to check: Examine the min, max, mean, and median of each variable. The gap between

max and mean (or min and mean) will be larger when there are outliers.

Definition 25.4 (LS Assumption 4: No Perfect Multicollinearity). No regressor is an exact linear
function of another regressor.

Perfect multicollinearity occurs when one regressor can be written as a perfect linear com-
bination of others:

X2i = c ·X1i for some constant c

Example 25.1 (Perfect Multicollinearity). Consider the wage regression:

Yi = β0 + β1X1i + ui

where Yi is wage and X1i is years of education.
If we try to add X2i where X2i = 2×X1i (e.g., semesters instead of years):

Yi = β0 + β1X1i + β2X2i + ui

This model cannot be estimated because X2 is a perfect linear function of X1. The OLS
algorithm will return “NA” for one of the coefficients (as shown in R output: “1 not defined
because of singularities”).
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Note

[Homoskedasticity Assumption (Optional)] An additional assumption sometimes made:

Var(ui|X1i, X2i, . . . , Xki) = σ2
u (constant)

The variance of the error term is constant across all values of the regressors. When this fails,
we have heteroskedasticity.

26 The Dummy Variable Trap

26.1 Including Indicator Variables

Suppose you want to include an indicator (dummy) variable Di in your regression.

Example 26.1 (Gender and Wages). Define two dummy variables:

D1i =

{
0 if female
1 if male

D2i =

{
1 if female
0 if male

With Yi = wage as the outcome variable, consider the regression:

Yi = β0 + β1D1i + ui

Here β̂1 represents the average wage difference between males and females.
Alternatively:

Yi = α0 + α1D2i + ui

In this case, α̂1 also represents the average wage difference between males and females, but with
opposite sign: α̂1 = −β̂1.

26.2 The Trap: Including All Categories

Definition 26.1 (Dummy Variable Trap). If you include both dummy variables representing all
categories of a categorical variable, you create perfect multicollinearity:

D1i +D2i = 1 ⇒ D1i = 1−D2i

This is a perfect linear function!

Theorem 26.1 (Why the Model Fails). Consider the model:

Yi = β0 + β1D1i + β2D2i + ui

Substituting D2i = 1−D1i:

Yi = β0 + β1D1i + β2(1−D1i) + ui

= β0 + β1D1i + β2 − β2D1i + ui

= (β0 + β2) + (β1 − β2)D1i + ui
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This collapses to a single regressor with two parameters — impossible to estimate sepa-
rately!

The software will report “NA” for one coefficient (“not defined because of singularities”).

Key Point

Rule: When including dummy variables for a categorical variable with k categories, include
only k − 1 dummies. The omitted category becomes the reference group or baseline
category.

Example 26.2 (R Output with Dummy Variable Trap). Correct specification (one dummy for
“white”):

lm(formula = wage ~ education + white, data = CPS1988)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -123.2581 14.2508 -8.649 <2e-16 ***
education 46.2504 0.8882 52.070 <2e-16 ***
white 133.1458 9.5332 13.967 <2e-16 ***

Interpretation:

• β̂0 = −123.26: Expected wage when education = 0 and white = 0 (non-white)

• β̂1 = 46.25: Each additional year of education increases wage by $46.25

• β̂2 = 133.15: White workers earn $133.15 more on average than non-white workers, holding
education constant

If we include both “white” and “non.white” dummies, R drops one automatically and shows
“NA”.

27 Imperfect Multicollinearity

27.1 Definition and Consequences

Definition 27.1 (Imperfect Multicollinearity). Imperfect multicollinearity occurs when X1

and X2 are highly correlated but not a perfect linear function of each other.
In the model:

Yi = β0 + β1X1i + β2X2i + ui

OLS will work, but poorly:

• β̂1 and β̂2 will be very imprecise

• Large standard errors for the coefficients

Theorem 27.1 (Why Imperfect Multicollinearity Causes Problems). Recall that β̂1 estimates the
relationship between X1 and Y holding X2 constant.

If X1 and X2 are highly correlated, then:
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• It is difficult to estimate the “net effect” of X1 alone

• Very little variation in X1 is left to exploit after accounting for X2

• Result: SE[β̂1] is large ⇒ 95% CI for β̂1 is wide

27.2 How to Detect Multicollinearity

1. Pairwise correlations: If |Corr(X1, X2)| > 0.7 or 0.8, this is not a good sign

2. High R2 but insignificant coefficients: If the overall model has high R2 but individual
coefficients are not statistically significant due to large standard errors

3. Variance Inflation Factor (VIF): A formal diagnostic measure

27.3 Variance Inflation Factor (VIF)

Definition 27.2 (Variance Inflation Factor). For the model:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui

To calculate V IF (β̂1):

1. Run the auxiliary regression:

X1i = α0 + α2X2i + α3X3i + · · ·+ αkXki + εi

2. Calculate R2
1 from this regression

3. Compute:
V IF (β̂1) =

1

1−R2
1

Theorem 27.2 (Interpreting VIF). • V IF (β̂j) ≥ 5 indicates severe multicollinearity

• Some sources use V IF ≥ 10 as the threshold

• Higher VIF means the standard error of β̂j is inflated by that factor

27.4 How to Fix Multicollinearity

1. Do nothing: Sometimes multicollinearity is unavoidable and doesn’t prevent valid inference

2. Drop redundant variables: If two variables measure essentially the same thing

3. Transform multicollinear variables:

• If GDP and Population are both correlated → use GDP per capita instead
• Combine related variables into an index

4. Larger sample size: More data can help provide more variation to separate effects

Example 27.1 (R Output: Multiple Regression with Control Variables). Model: Test scores on
STR, English learners, free lunch eligibility, and expenditure per student.
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lm(formula = read ~ str + english + lunch + expenditure)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 662.090395 9.071658 72.984 < 2e-16 ***
str -0.203130 0.286034 -0.710 0.478
english -0.210593 0.030448 -6.916 1.76e-11 ***
lunch -0.550214 0.020324 -27.072 < 2e-16 ***
expenditure 0.004667 0.000841 5.551 5.08e-08 ***

95% CI for STR coefficient: −0.203± 1.96× 0.286 = [−0.76,+0.36]
The correlation matrix and VIF values show no severe multicollinearity (all VIF < 2).
Key insight: Control variables do not need to have a causal interpretation to be useful for

reducing omitted variable bias.

28 Hypothesis Testing in Multiple Regression

28.1 Testing Individual Coefficients

For the model:
Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui

Step 1: State hypotheses for coefficient βj (where βj,0 can be any number):

H0 : βj = βj,0 (j = 1, . . . , k)

HA : βj ̸= βj,0

Step 2: Compute the t-statistic:

t-stat = β̂j − βj,0

SE[β̂j ]

By CLT: β̂j−E[β̂j ]√
Var(β̂j)

a∼ N(0, 1)

Step 3: Calculate p-value and make decision:

p-value = 2× Φ(−|t-stat|)

If p-value < critical p ⇒ Reject H0

95% Confidence Interval:
β̂j ± 1.96× SE[β̂j ]

29 Test of Joint Hypotheses: The F-Test

29.1 Why Individual t-Tests Don’t Work for Joint Hypotheses

Sometimes we need to test multiple restrictions simultaneously (joint hypothesis).
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Example 29.1 (Testing if School Resources Matter). Consider:

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + ui

where: Y = test score, X1 = STR, X2 = % English learners, X3 = % eligible for free lunch, X4 =
expenditure per student.

Null hypothesis: School resources (STR and expenditure) don’t matter

H0 : β1 = 0 AND β4 = 0

Alternative: They do matter

HA : Either β1 ̸= 0 OR β4 ̸= 0 (or both)

Here q = 2 (number of restrictions in the joint hypothesis).

Theorem 29.1 (Why Individual t-Tests Fail for Joint Hypotheses). Suppose β1 = 0 and β4 = 0
are both true. At 5% significance level:

• Probability of failing to reject H0 : β1 = 0 is 95%

• Probability of failing to reject H0 : β4 = 0 is 95%

• Probability of failing to reject both: 0.95× 0.95 = 0.9025

• Probability of rejecting at least one (Type I error): 1− 0.9025 = 9.75%

This is almost double the intended 5% significance level! We reject too often when using
individual t-tests for joint hypotheses.

Additional problem: If β̂1 and β̂4 are correlated (which they typically are), the calculation
is even more complicated.

29.2 The F-Statistic

Definition 29.1 (F-Test for Joint Hypotheses). The F-statistic accounts for the correlation be-
tween coefficient estimates:

F =
1

2

[
t21 + t24 − 2ρ̂t1,t4 · t1 · t4

1− ρ̂2t1,t4

]
where ρ̂t1,t4 is the estimated correlation between t1 and t4.
Special case: If t1 and t4 are independent:

F =
1

2
(t21 + t24)

Under H0 and in large samples: F ∼ χ2
q/q (approximately Fq,∞)

Theorem 29.2 (Decision Rule). If F is large ⇒ Reject the null hypothesis.
Critical values at 5% significance level:

• q = 1: Critical F = 3.84

• q = 2: Critical F = 3.00

• q = 3: Critical F = 2.60
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29.3 F-Test Using R2

Theorem 29.3 (F-Statistic Formula Using R2). Under homoskedasticity, there’s a simpler formula
comparing two regressions:

• Restricted model: Impose H0 (e.g., β1 = 0, β4 = 0)

• Unrestricted model: Full model with all parameters

Calculate R2 from both models:

F =
(R2

unr −R2
res)/q

(1−R2
unr)/(n− k − 1)

where:

• q = number of restrictions

• k = number of regressors in unrestricted model

• n = sample size

Key Point

Intuition:

• If the difference in R2 is large ⇒ F is large ⇒ more likely to reject H0

• If the difference is not big, then maybe the coefficients jointly do not add much pre-
diction power to the model

Example 29.2 (Numerical Example). Given:

R2
unr = 0.8212 (q = 2, testing β1 = 0, β4 = 0)

R2
res = 0.7959

n− k − 1 = 420− 4− 1 = 415

Calculate:
F =

(0.8212− 0.7959)/2

(1− 0.8212)/415
=

0.0253/2

0.1788/415
=

0.01265

0.000431
= 29.36

Since 29.36 > 3.00 (critical value for q = 2 at 5%), we reject the null hypothesis.
Conclusion: Classroom resources (STR and expenditure) are jointly statistically significant.

They do matter for test scores.
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Part IV
Extensions
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30 Non-Linear Regression Models

30.1 Motivation

In many applications, the relationship between Y and X is non-linear:

• The impact of X on Y depends on the level of X

• β is not constant — it is a function of X

• Sometimes this is theoretically justified

Example 30.1 (Wage and Age). Wages typically increase faster early in one’s career, then the
rate of increase slows down:

• The marginal effect of age on wage is larger at age 25 than at age 50

• This suggests a concave (diminishing returns) relationship

Definition 30.1 (General Non-Linear Population Regression Function).

Yi = f(X1i, X2i, . . . , Xki), i = 1, 2, . . . , n

where f(·) is a non-linear function.
Key insight: In some cases, we can still use OLS after appropriate transformations.

30.2 Two Main Approaches

1. Polynomial regression: Population regression function can be approximated by a quadratic,
cubic, or higher-order polynomial

2. Logarithmic transformation: Transform X, Y , or both to logarithms, which makes inter-
pretation easier

31 Polynomial Regression

Definition 31.1 (Polynomial Regression Model).

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βkX

k
i + ui

Key features:

• Single underlying variable X

• All regressors are powers of X

• Yi = f(Xi) — a polynomial function

• The model is linear in parameters, so we can use OLS

• Individual coefficients are hard to interpret directly

Example 31.1 (Common Polynomial Specifications). 1. Linear: Yi = β0 + β1Xi + ui

2. Quadratic: Yi = β0 + β1Xi + β2X
2
i + ui

3. Cubic: Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + ui
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31.1 Interpreting Polynomial Coefficients

For the quadratic model:
Yi = β0 + β1Xi + β2X

2
i + ui

The marginal effect of X on Y is found by taking the derivative:

dYi
dXi

= β1 + 2β2Xi

Key Point

The marginal effect depends on the level of X:

• If β1 > 0 and β2 < 0: positive but diminishing effect (concave)

• The effect gets smaller as X increases

Example 31.2 (Test Scores and Income (Quadratic)). Given estimates: β̂1 = 3.473 (SE = 0.310)
and β̂2 = −0.036 (SE = 0.006)

Model: Ŷi = β̂0 + 3.473Xi − 0.036X2
i

Marginal effect at different income levels:

dŶi
dXi

= 3.473 + 2(−0.036)Xi = 3.473− 0.072Xi

Evaluating at X̄ = 15.32 (mean income in $1000s):

dŶi
dXi

∣∣∣∣
X=15.32

= 3.473− 0.072(15.32) = 3.473− 1.103 = 2.37

Interpretation: A $1,000 increase in income when income is around $15,317 is associated with
a 2.37 point increase in test scores.

At different income levels:

Income (X) Marginal Effect (dY/dX)

$5,000 3.11
$15,000 2.39
$30,000 1.31

Note

[Caution] Never extrapolate (make predictions/evaluate) outside the data range of X.
Polynomial models can behave erratically outside the observed data.

31.2 Testing for Non-Linearity

Use F-tests to determine the appropriate polynomial degree:
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Example 31.3 (Testing Linear vs. Cubic). Unrestricted model: Yi = β0 + β1Xi + β2X
2
i +

β3X
3
i + ui
Restricted model: Yi = β0 + β1Xi + ui
Test: H0 : β2 = 0 AND β3 = 0 vs. HA: Either β2 ̸= 0 OR β3 ̸= 0
If F-stat = 15.702, p-value < 0.01 ⇒ Reject H0. Model should be non-linear.

Example 31.4 (Testing Quadratic vs. Cubic). H0 : β3 = 0 (quadratic is sufficient) vs. HA : β3 ̸= 0
If F-stat = 0.2768, p-value = 0.5997 > 0.01 ⇒ Fail to reject H0.
Conclusion: X3 should NOT be in the model (overfitting). Quadratic is sufficient.
Note: This is equivalent to an individual t-test on β3.

Key Point

Summary for Polynomial Models:

• Can be estimated using OLS

• Individual coefficients are hard to interpret

• Best option: Take the derivative and evaluate the marginal effect at a specific X

• Decide on the appropriate form using F-tests or t-tests

32 Logarithmic Transformations

32.1 Properties of Logarithms

Definition 32.1 (Natural Logarithm). log(X) = ln(X) denotes the natural logarithm of X.
Logarithms are very useful for modeling relative (percentage) changes.

Theorem 32.1 (Logarithm Approximation for Small Changes). For small changes:

ln(X +∆X)− ln(X) = ln

(
X +∆X

X

)
≈ ∆X

X

This equals the relative change in X. Multiplying by 100 gives the percentage change:

∆X

X
× 100 = % change in X

32.2 Three Logarithmic Specifications

Definition 32.2 (Logarithmic Model Types). 1. Linear-Log: Yi = β0 + β1 ln(Xi) + ui

2. Log-Linear: ln(Yi) = β0 + β1Xi + ui

3. Log-Log: ln(Yi) = β0 + β1 ln(Xi) + ui
β1 is interpreted very differently in each case!
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32.3 Linear-Log Model

Definition 32.3 (Linear-Log Specification).

Yi = β0 + β1 ln(Xi) + ui

Derivation of interpretation:
Before: Yi = β0 + β1 ln(Xi) + ui
After: Yi +∆Y = β0 + β1 ln(Xi +∆X) + ui
Subtracting:

∆Y = β1[ln(Xi +∆X)− ln(Xi)] ≈ β1 ·
∆X

Xi

Therefore:
β1 =

∆Y

∆X/X

Key Point

Interpretation (Linear-Log): A 1% increase in X is associated with a β1/100 unit change
in Y .
Equivalently: A 1% increase in X is associated with a 0.01β1 change in Y .

32.4 Log-Linear Model

Definition 32.4 (Log-Linear Specification).

ln(Yi) = β0 + β1Xi + ui

Derivation:
Before: ln(Yi) = β0 + β1Xi + ui
After: ln(Yi +∆Y ) = β0 + β1(Xi +∆X) + ui
Subtracting:

ln(Yi +∆Y )− ln(Yi) = β1∆X

∆Y

Y
≈ β1∆X

Therefore:
β1 =

∆Y/Y

∆X

Key Point

Interpretation (Log-Linear): A 1-unit increase in X is associated with a 100 × β1%
change in Y .
Equivalently: β1 represents the percentage change in Y (divided by 100) for a one-unit
increase in X.
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32.5 Log-Log Model

Definition 32.5 (Log-Log Specification).

ln(Yi) = β0 + β1 ln(Xi) + ui

Derivation:
Before: ln(Yi) = β0 + β1 ln(Xi) + ui
After: ln(Yi +∆Y ) = β0 + β1 ln(Xi +∆X) + ui
Subtracting:

ln(Yi +∆Y )− ln(Yi) = β1[ln(Xi +∆X)− ln(Xi)]

∆Y

Y
≈ β1 ·

∆X

X

Therefore:
β1 =

∆Y/Y

∆X/X

Key Point

Interpretation (Log-Log): A 1% increase in X is associated with a β1% change in Y .
β1 is the elasticity of Y with respect to X.

32.6 Summary Table

Model Specification β1 Interpretation

Linear Y = β0 + β1X ∆X = 1 ⇒ ∆Y = β1

Linear-Log Y = β0 + β1 ln(X) 1% ↑ in X ⇒ ∆Y = β1/100

Log-Linear ln(Y ) = β0 + β1X ∆X = 1 ⇒ %∆Y = 100β1

Log-Log ln(Y ) = β0 + β1 ln(X) 1% ↑ in X ⇒ %∆Y = β1

32.7 Practical Considerations

Note

All logarithmic models:

• Can be estimated using OLS

• Hypothesis tests and confidence intervals are interpreted as usual

• Standard errors and t-statistics apply to the transformed model

When to use log transformations:

• Income, wages: Often have skewed distributions — log transformation helps
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• Plot the relationships to see if logs are appropriate

• Use diagnostic tests to compare model fits

Example 32.1 (Log-Linear with Dummy Variable). Model: ln(Yi) = β0 + β1Di + ui
where Di is a dummy variable (0 or 1).
When Di = 0: ln(Yi|Di = 0) = β0 + ui
When Di = 1: ln(Yi|Di = 1) = β0 + β1 + ui
Therefore:

β1 = ln

(
Yi|Di = 1

Yi|Di = 0

)
Interpretation: β1 represents the approximate percentage difference in Y between groups

(when D = 0 vs. D = 1).

Note

[Warning] The approximation ln(1 + x) ≈ x only works when ∆Y/Y is small (typically less
than 10-15%).
For exact changes, use the exponential:

ln(Yi) = β0 + β1Xi ⇒ Yi = eβ0+β1Xi

33 Exact Percentage Change in Log Models
Recall the log-linear model:

ln(Yi) = β0 + β1Xi + ui

When β1 is small, we use the approximation ln(1 + x) ≈ x to interpret β1 as the approximate
percentage change in Y for a one-unit change in X. However, this approximation only matters
when β1 is large.

33.1 Deriving the Exact Formula

Starting from the regression output:

ln

(
∆Yi + Yi

Yi

)
= β1∆Xi

This simplifies to:

ln

(
∆Yi
Yi

+ 1

)
= β1∆Xi

Using the approximation when changes are small:

∆Yi
Yi

≈ β1∆Xi = %∆Yi
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33.2 Exact Percentage Change

For the exact percentage change, consider two values Xi0 and Xi1:

lnYi0 = β0 + β1Xi0 + ui

lnYi1 = β0 + β1Xi1 + ui

The percentage change in Y is:
∆Yi
Yi

=
Yi1 − Yi0

Yi0
=

Yi1
Yi0

− 1

Taking the exponential:

∆Yi
Yi

= exp

(
ln

Yi1
Yi0

)
− 1 = exp(β1Xi1 − β1Xi0)− 1

Key Point

The exact percentage change formula for log-linear models is:

%∆Y = exp(β1∆X)− 1

Example 33.1 (Large Coefficient). If β̂1 = 0.3 and ∆X = 1:

• Approximate: %∆Y ≈ 100× 0.3 = 30%

• Exact: %∆Y = exp(0.3)− 1 = 1.35− 1 = 0.35 = 35%

The difference of 5 percentage points matters when β1 is large!

34 Linear Probability Model

34.1 Regression with a Binary Dependent Variable

So far we have considered cases where Y is continuous (e.g., test scores, traffic fatality rates). Now
consider cases where Y is binary:

Outcome Y Values

Getting into college {0, 1}
Smoking status {0, 1}
Obesity {0, 1}
Mortgage approval/denial {0, 1}

Question: How do we interpret β̂1 when Xi is continuous and Yi is binary?

34.2 The Linear Probability Model (LPM)

Definition 34.1 (Linear Probability Model). The Linear Probability Model is:

Yi = β0 + β1Xi + ui

where Yi ∈ {0, 1}.
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34.3 Interpreting the Conditional Expectation

For a binary outcome:

E[Yi|Xi] = 1× Pr(Yi = 1|Xi) + 0× Pr(Yi = 0|Xi) = Pr(Yi = 1|Xi)

Therefore:
E[Yi|Xi] = Pr(Yi = 1|Xi)

Key Point

In the Linear Probability Model, the conditional expectation equals the probability that
Y = 1 given X.

34.4 Derivation

Starting with:
Yi = β0 + β1Xi + ui

Taking the conditional expectation:

E[Yi|Xi] = E[β0 + β1Xi + ui|Xi]

= E[β0|Xi] + E[β1Xi|Xi] + E[ui|Xi]

= β0 + β1Xi + 0

Since E[Yi|Xi] = Pr(Yi = 1|Xi):

Pr(Yi = 1|Xi) = β0 + β1Xi

The sample analog:
P̂r(Yi = 1|Xi) = β̂0 + β̂1Xi

34.5 Interpretation of Coefficients

In the LPM:
β̂1 =

∆Y

∆X
=

∆Pr(Y = 1|X)

∆X

Key Point

β̂1 represents the change in probability (in percentage points) that Y = 1 for a one-unit
change in X.

Example 34.1 (Mortgage Denial — Continuous Regressor). Consider the probability of mortgage
denial conditional on the payment-to-income (P/I) ratio:

Yi = β0 + β1Xi + ui

where Yi = 1 if mortgage is denied, and Xi is the P/I ratio.
Example calculations:
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• P̂r(Yi = 1|Xi = 0.3) = 0.12 (12% denial rate)

• P̂r(Yi = 1|Xi = 0.5) = 0.26 (26% denial rate)

The slope coefficient:

β̂1 =
P̂r(Yi = 1|0.5)− P̂r(Yi = 1|0.3)

0.5− 0.3
=

0.26− 0.12

0.2
=

0.14

0.2
= 0.70

Interpretation: The probability of denial goes up by 0.14 (or 14 percentage points) as the
P/I ratio increases by 0.2.

Using regression coefficients β̂0 = −0.07991 and β̂1 = 0.60353:

P̂r(denial|X = 0.4) = −0.07991 + 0.4× 0.60353 = 16.2%

P̂r(denial|X = 0.3) = −0.07991 + 0.3× 0.60353 = 10.1%

The difference is 16.2%− 10.1% = 6.1%. If P/I increases by 0.1, the probability of denial goes
up by approximately 6 percentage points.

34.6 LPM with Binary Regressor

Consider:
Yi = β0 + β1Di + ui

where both Yi ∈ {0, 1} and Di ∈ {0, 1}.
The conditional expectation:

E[Yi|Di] = Pr(Yi = 1|Di) = β0 + β1Di

For Di = 0:
Pr(Yi = 1|Di = 0) = β0 (probability when D = 0)

For Di = 1:
Pr(Yi = 1|Di = 1) = β0 + β1 (probability when D = 1)

Example 34.2 (Mortgage Denial by Race). Let Yi = 1 if mortgage denied, Di = 1 if applicant is
Black.

Results:

• P̂r(Yi = 1|Di = 0) = β̂0 = 9.3% (denial rate for non-Black applicants)

• P̂r(Yi = 1|Di = 1) = β̂0 + β̂1 = 28.4% (denial rate for Black applicants)

Therefore: β̂1 = 28.4%− 9.3% = 19.1%
Interpretation: β̂1 = 0.191 means being Black is associated with a 19.1 percentage point

higher probability of mortgage denial.
With controls (3rd model): When holding P/I ratio constant, being Black is associated

with a 17.7 percentage point decline in approval probability.
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34.7 Issues with the Linear Probability Model

Note

[Important Limitation] The LPM has a fundamental problem: predicted probabilities can
fall outside the [0, 1] interval.

Since Pr(Y = 1|X) = β0 + β1X is a linear function of X:

• If β1 > 0, for sufficiently large X: Pr(Y = 1|X) > 1

• If β1 > 0, for sufficiently small X: Pr(Y = 1|X) < 0

This is not realistic since probabilities must be between 0 and 1.

Conceptually:

• The LPM assumes the effect of X on Pr(Y = 1|X) is constant (slope = β1)

• In reality, the marginal effect should diminish as we approach probability bounds

• More sophisticated models (Probit, Logit) constrain predictions to [0, 1]

Key Point

Despite this limitation, the LPM remains useful for:

• Estimation: OLS provides consistent estimates

• Interpretation: Coefficients have straightforward interpretation

• Inference: Standard hypothesis tests and confidence intervals apply

The predicted probabilities may be problematic, but the estimated coefficients and their
interpretations remain valid.
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