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Part 1

Probability & Statistics Review
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1 Course Introduction

1.1 What is Econometrics?

Econometrics combines economic theory, mathematics, and statistical methods to analyze eco-
nomic data. The term literally means “economic measurement”—the quantification of economic
relationships.

Key Point

Econometrics sits at the intersection of several related fields:

e Data Science: Extracting insights from data

Statistical Learning: Building predictive models

Machine Learning: Automated pattern recognition (supervised and unsupervised)
e Regression Analysis: Modeling relationships between variables

1.2 The Big Data Revolution

Two important technological changes have transformed how we work with data:

1. Smartphones and IoT Devices: We became capable of collecting vastly more digital
information than ever before.

2. Cloud Computing and Servers: We developed the infrastructure to store, manage, and
process massive datasets using technologies like:

o SQL databases (relational data)
o Graph databases (network/relationship data)
e Cloud storage and computing platforms

1.3 Prediction vs. Causal Inference

1.3.1 Machine Learning and Prediction

Machine learning approaches focus on prediction—forecasting outcomes based on patterns in data.
These methods can be applied in virtually any market or domain.

Example 1.1. Real estate price estimation algorithms (e.g., Zillow’s “Zestimate” or Redfin’s esti-
mates) use machine learning to predict home values based on property characteristics, location, and
market conditions. Note that these predictions are never perfect—there is always some prediction
€rTor.

Machine learning can be categorized as:
o Supervised Learning: The algorithm learns from labeled training data (input-output pairs)

¢ Unsupervised Learning: The algorithm finds patterns in unlabeled data
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1.3.2 Classical Econometrics and Causation

Classical econometrics focuses on understanding causal relationships—mnot just whether X and
Y are correlated, but whether X actually causes changes in Y.

The fundamental question in causal research: Does X cause Y, or are they merely correlated
due to some other factor?
This requires careful research design, not just sophisticated statistical techniques.

Example 1.2. COVID-19 vaccine efficacy could not be established simply by observing that vacci-
nated people had lower infection rates (correlation). The FDA required large-scale randomized
controlled trials (RCTs) to establish that vaccines actually caused reduced infection rates before
granting approval.

1.4 Course Objectives

This course provides an introduction to both predictive and causal methods:
1. Learn the basic tools of regression analysis
2. Understand the critical difference between correlation and causation

3. Develop practical programming skills for data analysis

1.5 Course Logistics
1.5.1 Software and Tools

e R and RStudio: Industry-standard statistical programming environment
o Stack Overflow: Q&A platform for programming questions
¢ GitHub: Version control and code sharing platform

e Supplementary resource: “Econometrics Using R”

While spreadsheet programs like Excel and Access remain useful, more complex data analysis
increasingly requires programming languages like Python and R, which have become the
industry standard. Traditional statistical software (Stata, SPSS) is less commonly used in
modern data science workflows.

1.5.2 Grading Structure
High-Stakes Assessments (70%):

e 2 Midterm Exams
e 1 Final Exam
o Note: Exams do not require programming skills
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Low-Stakes Assessments (30%):

o 7 Homework Assignments (submitted through Blackboard)
o Graded Pass/Fail

o Group work permitted (maximum 2 students per group)

o FEach student receives different datasets
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2 Review of Probability Theory

2.1 Random Variables

Definition 2.1 (Random Variable). A random variable is a numerical summary of a random
outcome. We typically denote random variables with capital letters (X, Y, Z) and their specific
realized values with lowercase letters (z, y, 2).

Random outcomes contain two components:

1. Random component: Inherent uncertainty (e.g., coin flip)

2. Deterministic component: Systematic patterns that can be modeled

Example 2.1. Purely random: A coin flip resulting in heads or tails.
Mixed: COVID-19 infection status (Yes/No) has both random elements (chance exposure) and
deterministic elements (vaccination status, mask usage, etc.).

2.2 Types of Random Variables
2.2.1 Discrete Random Variables

Definition 2.2 (Discrete Random Variable). A random variable is discrete if it can take only a
finite or countably infinite number of distinct values.

Example 2.2.  « Binary outcome: Y € {0,1} (e.g., infected or not)
o Grade points: Y € {0,0.7,1,1.3,1.7,2,2.3,2.7, 3,3.3,3.7,4}
o Count data: Number of accidents per day

2.2.2 Continuous Random Variables

Definition 2.3 (Continuous Random Variable). A random variable is continuous if it can take
any numerical value within an interval or collection of intervals.

Example 2.3. Height, weight, income, temperature, time—any measurement that can take in-
finitely many values within a range.

In this course, we will primarily work with discrete random variables, though many concepts
extend naturally to the continuous case.

2.3 Probability Distributions

For a discrete random variable Y with possible outcomes {y1, 42, ..., yx}, the probability distri-
bution assigns a probability to each outcome:
PI‘(Y = yl), PI‘(Y = yg), SN PI‘(Y = yk)

Property 2.1 (Properties of Probability Distributions). For any valid probability distribution:
1. 0<Pr(Y=y;) <1foralli

k
2. ZPr(Y =y)=1
i=1
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2.4 Expected Value

Definition 2.4 (Expected Value). The expected value (or mean) of a discrete random variable
Y is the long-run average value, defined as:

k
ElY]=py =Y 4i-Pr(Y =y;) = yip1 + vop2 + - + yar
i=1

where p; = Pr(Y = y;).

The expected value is a weighted average of all possible outcomes, where the weights are
the probabilities of each outcome occurring.

2.4.1 The Bernoulli Distribution

Definition 2.5 (Bernoulli Random Variable). A Bernoulli (or binary /dummy) random variable
takes only two values:

Y € {0,1}
with probabilities:
PrY =1)=p
Pr(Y =0)=1-p

Theorem 2.1 (Expected Value of Bernoulli). For a Bernoulli random variable:
EY]=0-(1-=p)+1-p=p
The expected value equals the probability of “success” (Y = 1).

Example 2.4. Let Y indicate COVID-19 infection status, where Y = 1 means infected.
If Pr(Y =1) = 0.01 and Pr(Y = 0) = 0.99, then:

E[Y]=0x0.99+1x0.01=0.01=p

The expected value represents the infection rate in the population.

2.5 Variance and Standard Deviation

Definition 2.6 (Variance). The variance of a random variable Y measures the weighted spread
of outcomes around the mean py:

k

Var(Y) = o = BI(Y —uy)’] =) (yi — y)* - Pr(Y =)
i=1

Definition 2.7 (Standard Deviation). The standard deviation is the square root of the variance:

7y = \Jo% = Var(Y)

10
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We often prefer the standard deviation because it has the same unit of measurement as
the original variable Y, making it more interpretable.

Property 2.2. The variance is always non-negative: 032/ > 0, and equals zero only when Y is

constant (not random).
Theorem 2.2 (Variance of Bernoulli). For a Bernoulli random variable with Pr(Y = 1) = p:
o3 = (0=p)*(1 —p) + (1 —p)*p
=p*(1=p)+(1-p)°p
=p(l=p)p+ (1 -p)]
=p(l-p)
Example 2.5. For COVID-19 infection with p = 0.01:
0% =0.01 x 0.99 = 0.0099

oy = v0.0099 ~ 0.0995

2.6 Two Random Variables: Joint and Marginal Distributions

When working with two discrete random variables X and Y, we need to understand how they relate
to each other.

Definition 2.8 (Marginal Distribution). The marginal distribution of X (or Y') describes the
probability distribution of that variable alone, ignoring the other:

Pr(X =2) and Pr(Y =y)

Definition 2.9 (Joint Distribution). The joint distribution describes the probability that X
and Y simultaneously take specific values:

Pr(X =z,Y =y)

Property 2.3 (Relationship Between Joint and Marginal). The marginal distribution can be ob-
tained from the joint distribution by summing over all values of the other variable:

Pr(Y =y) = ZPr(X =z;,Y =y)

Example 2.6 (Commute Time and Rain). Let:

e Y €{0,1} where Y =0 is long commute, Y = 1 is short commute
e X €{0,1} where X =0 is rain, X = 1 is no rain

Joint Distribution:

| X =0 (Rain) X =1 (No Rain) | Marginal of Y’

Y =0 (Long) 0.15 0.07 0.22
Y =1 (Short) 0.15 0.63 0.78
Marginal of X | 0.30 0.70 | 1.00

11
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Calculations:

Pr(Y =0) =Pr(X =0,Y =0) +Pr(X =1,Y = 0) = 0.15 + 0.07 = 0.22
1)=Pr(X=0,Y =1)+Pr(X=1,Y =1) = 0.15 + 0.63 = 0.78

12
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3 Conditional Probability and Related Concepts

3.1 Bayes’ Theorem and Conditional Probability

Definition 3.1 (Conditional Probability). The conditional probability of Y = y given that

X =z is:
Pr(Y =y, X =x)

Pr(X =)
This represents the probability that Y equals y, conditional on knowing that X equals x.

PrlY =y| X =2)=

Theorem 3.1 (Bayes’ Theorem).

PriX=2|Y=y) Pr(Y =y)
Pr(X =x)

PriY =y | X =2) =

Example 3.1 (Continued: Commute and Rain). What is the probability of a short commute given
that it’s raining?
Pr(X =0,Y =1) 0.5

= = 0.50
Pr(X = 0) 0.30

Pr(Y =1|X=0)=
When it rains, there’s a 50% chance of a short commute.

3.2 Conditional Expected Value

Definition 3.2 (Conditional Expected Value). The conditional expected value of Y given
X ==zis:
EBY [X=z]=) 4 -Pr(Y =y | X =x)
i
Example 3.2 (Rolling a Die). Consider rolling a fair six-sided die. Define:

e Y €{1,2,3,4,5,6} with Pr(Y =y;) =1/6 for all ¢
o X €{0,1} where X =01if YV iseven, X =1 if Y is odd

Unconditional Expected Value:

6
1 1 1
Zi:l 6" "6 6 6

Conditional Expected Value Given Odd (X =1):

1 1 1 9
EY | X=1]=1.= el o2
Y| ] g3 gHb o=2=3
Conditional Expected Value Given Even (X = 0):
1 1 1 12
ElY | X=0=2-244.-246.-2="2=14
Y| ] gTA g6 =1

13
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3.3 Law of Iterated Expectations

Theorem 3.2 (Law of Iterated Expectations (LIE)). The unconditional expected value equals the
weighted average of conditional expected values:

ElY] = Z ElY | X =] - Pr(X = x;)

In compact notation:

E[Y] = E[EY | X]]

The Law of Iterated Expectations states that we can compute E[Y] by:

1. Computing E[Y | X = z] for each possible value of X
2. Taking the weighted average, using Pr(X = z) as weights

Example 3.3 (Verification with Die Example). Using our die rolling example:

E[Y]=E[Y | X =0]-Pr(X =0)+ E[Y | X = 1] - Pr(X = 1)

1 1
—4.-43.=

2+ 2
=2+4+15=35v

This matches our direct calculation of E[Y] = 3.5.

3.4 Independence

Definition 3.3 (Statistical Independence). Two random variables X and Y are independent if
knowing the value of one provides no information about the other:

PrlY =y| X =2)=Pr(Y =y) forall z,y
Property 3.1 (Equivalent Characterization). X and Y are independent if and only if:
PriX=2Y=y)=Pr(X=2)-Pr(Y =y) foralz,vy

The joint probability equals the product of the marginal probabilities.

Independence is a strong assumption. In our commute example, X (rain) and Y (commute
time) are likely not independent—rain probably affects commute time!

14
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3.5 Covariance

Definition 3.4 (Covariance). The covariance between two random variables X and Y measures
how they vary together:

Cov(X,Y) = oxy = E[(X — pux)(Y — py)]
For discrete random variables:

oxy =y > (wi—ux)(y; —py) - Pr(X =2;,Y =)
i

Property 3.2 (Interpretation of Covariance). e oxy > 0: X and Y tend to move in the same
direction
e oxy < 0: X and Y tend to move in opposite directions
o oxy = 0: No linear relationship (but not necessarily independent!)

Theorem 3.3 (Covariance of Independent Variables). If X and Y are independent, then Cov(X,Y) =
0.
Warning: The converse is not true! Zero covariance does not imply independence.

3.6 Correlation

Definition 3.5 (Correlation Coefficient). The correlation between X and Y is the standardized

covariance: Cov(X.V
Corr(X,Y) = pxy = ov(X, ¥) = XY
oxOoy oxOoy

Property 3.3 (Properties of Correlation). 1. =1 < pxy <1
2. pxy = 1: Perfect positive linear relationship
3. pxy = —1: Perfect negative linear relationship
4. pxy = 0: No linear relationship
5. Correlation is unitless (unlike covariance)

Key Point

Correlation measures the strength and direction of the linear relationship between two
variables. A strong nonlinear relationship might have correlation near zero!

With correlation, only the direction matters, not the scale. A correlation of p = 0.7
indicates a positive relationship; whether the variables are measured in dollars or thousands
of dollars doesn’t change the correlation.
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4 Random Sampling and the Sample Average

4.1 Population vs. Sample

In most real-world applications, we cannot observe the entire population. Instead, we work with
samples to learn about population parameters.

Definition 4.1 (Population Parameters). The true characteristics of the population distribution
that we want to learn about:

o Population mean: E[Y] = uy

« Population variance: Var(Y) = o2
e Population standard deviation: oy
» Covariance: Cov(X,Y)

o Correlation: Corr(X,Y)

These parameters are unknown and must be estimated from sample data.

4.2 Random Sampling

Definition 4.2 (Random Sample). A random sample {Y7,Y5,...,Y,} consists of n observations
drawn from a population such that:

1. Each Y; is equally likely to be drawn
2. Each Y; is drawn from the same probability distribution

Definition 4.3 (IID). Random variables Y7, Y3, ...,Y,, are independently and identically dis-
tributed (i.i.d.) if:

1. Identically distributed: Each Y; comes from the same probability distribution
2. Independent: The value of any Y; provides no information about any other Y

Random sampling ensures the i.i.d. property.

4.3 The Sample Mean

Definition 4.4 (Sample Mean). The sample mean (or sample average) of n randomly drawn
observations is:

The sample mean Y is itself a random variable. Every time we draw a new random sample,
we get a different value of Y. This means Y has its own probability distribution, expected
value, and variance.

16
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4.4 Properties of the Sample Mean
Theorem 4.1 (Expected Value of Sample Mean). If Y3, Ys, ..., Y, areiid. with E[Y;] = py, then:

ElY]=py

Proof.

n

> Y

i=1

n

1

=1

1
)
n

(EY1] + E[Ya] +--- + E[Y3])

1
(py +py 4 py) = —(n-py) = py
O

Theorem 4.2 (Variance of Sample Mean). If Y7,Y5,...,Y, are i.i.d. with Var(Y;) = o2, then:

2
Var(Y) = %

The standard deviation of Y (called the standard error) is:

oy
oy = —
Y \/77,

Proof. Because Y; and Y; are independent for ¢ # j:
Va 1 Zn:Y ! Va zn:Y
r|{ — i = — I 3
i n’ i=1
1
=3 (Var(Y1) + Var(Ys) + - - - + Var(Y,,))

1 2 U%/
_ng(n UY)_ n

Var(Y)

As the sample size n increases, the variance of Y decreases. This means larger samples give
us more precise estimates of the population mean.

17
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5 Large Sample Approximations

5.1 Law of Large Numbers

Theorem 5.1 (Law of Large Numbers (LLN)). Let Y7,Y5,...,Y,, be ii.d. random variables with
ElYi] = py and Var(Y;) = 032/ < 00. Then as n — oo:

Yﬂﬂty

In words: the sample mean converges in probability to the population mean as the sample size
Erows.

The Law of Large Numbers tells us that Y is a good approximation for iy when the sample
size n is large. The larger the sample, the closer Y tends to be to uy.

5.2 Central Limit Theorem

Theorem 5.2 (Central Limit Theorem (CLT)). Let Y7,Y5,...,Y, be i.i.d. random variables with
E[Y;] = py and Var(Y;) = 02 < oo. Then as n — oo:

2
VAN (/W,JY)
n

Or equivalently, the standardized sample mean converges to a standard normal:

Y —py d
— N(0,1
e T NOD

The Central Limit Theorem is remarkable: regardless of the original distribution of Y,
the sampling distribution of Y is approximately normal for large n. This is why the normal
distribution is so important in statistics!

5.3 The Normal Distribution

Definition 5.1 (Normal Distribution). A random variable Y follows a normal distribution with
mean y and variance 0%, written Y ~ N(uy, 0%), if its probability density function is:

1 _ 2
exp (_(y ;;y) )
oyV2m 20y
Definition 5.2 (Standard Normal Distribution). The standard normal distribution is a normal
distribution with mean 0 and variance 1:

fly) =

Z ~ N(0,1)

where E[Z] =0 and Var(Z) = 1.

18
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Property 5.1 (Standardization). If Y ~ N(uy,0%), then the standardized variable:

_Y-w
gy

Z N(0,1)

Property 5.2 (95% Interval for Normal Distribution). For a standard normal variable Z ~ N(0,1):
Pr(—1.96 < Z < 1.96) ~ 0.95

This means approximately 95% of the probability mass lies within 1.96 standard deviations of the
mean.

Example 5.1. Suppose Y ~ N(1,4), so uy =1 and oy = 2. Find Pr(Y <2).
Solution: Standardize to convert to the standard normal:
Y—-1 2-1

< — ) = < 0.
5 < 2) Pr(Z < 0.5)

Pr(Y <2) :Pr(

Using the standard normal table: Pr(Z < 0.5) = 0.691.
For Pr(1 <Y <2):

Pri1<Y <2)=Pr(Y <2)-Pr(Y <1)=Pr(Z<0.5)—-Pr(Z <0)

=0.691 — 0.50 = 0.191
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6 Review of Statistics: Estimation

6.1 Estimators and Estimates

Definition 6.1 (Estimator). An estimator is a function of sample data used to estimate an
unknown population parameter. Since it depends on random sample data, an estimator is itself a
random variable.

Common estimators include:

1

¢+ Sample mean: ¥ = -3 | Y]
e Sample median

e Sample variance

Definition 6.2 (Estimate). An estimate is the numerical value obtained when we plug actual
sample data into an estimator. While an estimator is a random variable, an estimate is a specific
number.

Example 6.1. Suppose we want to estimate the average hourly earnings of college graduates. Let
Y be hourly earnings at the population level, with unknown mean py .
We draw a random sample {Y1,Y>,...,Y,} and compute:

R
P
i=1
Here Y is the estimator (a formula), and the computed value (say, $25.50) is the estimate.

6.2 Properties of Good Estimators

In general, an estimator of py is denoted fiy. What makes a good estimator?
Definition 6.3 (Unbiasedness). An estimator fiy is unbiased if:

Elpy] = py
On average, the estimator equals the true parameter value.

Definition 6.4 (Consistency). An estimator fiy is consistent if:
L op
ny — py asn — oo
As the sample size grows, the estimator converges to the true parameter.

Definition 6.5 (Efficiency). Between two unbiased estimators fiy and fiy-, we prefer the one with
smaller variance. An estimator is efficient if it has the smallest variance among all unbiased
estimators.

Var(jiy) < Var(jiy) = iy is more efficient

20
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6.3 BLUE: Best Linear Unbiased Estimator

Theorem 6.1 (Sample Mean is BLUE). Under random sampling, the sample mean Y is the Best
Linear Unbiased Estimator (BLUE) of py:

o Linear: Y = % >, Y; is a linear function of the observations

 Unbiased: E[Y] = py
e Best: Y has the smallest variance among all linear unbiased estimators

The sample mean minimizes the sum of squared deviations. To see this, consider minimizing;:

n

> (¥ —m)?

i=1
Taking the derivative with respect to m and setting equal to zero:

S - m2 = =2 (%~ m) =0
=1

dm “
=il

Solving: Y1, Yi=nm,som= 1" Y, =Y.

6.4 Sampling Distribution Examples

_ 2
Example 6.2. By the CLT, ¥ ~ N (w, %y) Given 1y = 100, 02 = 43, and n = 100:

- 43
Y ~ N (100, — | = N(100,0.43
(100,455, ) = 100,0.83

(a) Find Pr(Y < 101):

101 — 100

Pr(Y <101)=Pr( Z <
(7 < 1o =P (7.< T

> = Pr(Z < 1.525) ~ 0.936
(b) With n = 64: 02 = 43/64 = 0.672

_ 101 —1 103 -1
Pr(101<Y<103)—Pr(O 0z 0300)

— < <
v0.672 V0.672
=Pr(1.22 < Z < 3.66) ~ 0.111
(c) With n = 165: 02 = 43/165 = 0.26

_ 98 — 100
Pr(Y >98) =1—Pr <Z < > ~ 1.00
V0.26
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6.5 Non-Random Sampling and Selection Bias

Random sampling with i.i.d. observations (Y7,Y3,...,Y},) is crucial for valid inference. Non-
random sampling can lead to sample selection bias:
Examples of selection bias:

o Surveying unemployment on Sundays (employed people may be less available)
o Studying cancer rates without accounting for age (survivorship bias)
e Online surveys (exclude those without internet access)

Selection bias means our sample is not representative of the population, and our estimates
may be systematically wrong.

22
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7 Hypothesis Testing

7.1 Introduction to Hypothesis Testing

Hypothesis testing provides a framework for making decisions about population parameters based
on sample data.

Example 7.1 (Motivating Questions). e Do vaccines work? (Is the effect different from zero?)
e Do masks reduce transmission?
o Is there a gender wage gap? A racial gap in hiring?

7.2 Setting Up Hypotheses

Definition 7.1 (Null and Alternative Hypotheses). o Null hypothesis (Hp): The hypothesis
we are trying to reject. Typically states “no effect” or “no difference.”

Ho : py = pyp
where py is a specific hypothesized value (often 0).
« Alternative hypothesis (H4): What we believe if we reject Hy.
Hya - py # pyp  (two-sided alternative)
Or one-sided: Ha : py > pyp or Ha : py < pyo

7.3 The Testing Procedure
1. State the hypotheses: Define Hy and Hy4.
2. Collect data: Draw a random sample {Y7,Y3,...,Y,} and compute the sample mean Y.

3. Acknowledge sampling variation: Due to randomness, Y will almost never exactly equal
Hy,0, even if Hy is true.

4. Assume Hj is true: Under Hy, by the CLT:
2
Y ~ N <MY,07 O-Y>
n

5. Calculate the p-value: The probability of observing a sample mean at least as extreme as
what we observed, assuming Hy is true.

Definition 7.2 (P-value). The p-value is the probability of obtaining a test statistic at least as
extreme as the one observed, assuming the null hypothesis is true.

A small p-value indicates that the observed result would be unlikely if Hy were true, providing
evidence against Hy.

Key Point

The p-value answers: “If the null hypothesis were true, how likely would we be to see results
this extreme (or more extreme) just by chance?”

o Small p-value (e.g., < 0.05): Evidence against Hy; reject Hy
o Large p-value: Insufficient evidence to reject Hy
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7.4 Sample Variance and Standard Error
When the population variance 032/ is unknown (the typical case), we estimate it using the sample

variance.

Definition 7.3 (Sample Variance). The sample variance is:

The sample standard deviation is Sy = /55

We divide by n — 1 (not n) to obtain an unbiased estimator of o%. This is called Bessel’s
correction.

Definition 7.4 (Standard Error). The standard error of Y is the estimated standard deviation
of the sampling distribution:

SE[Y] =6y = j’%

This serves as a proxy for the true (unknown) oy = oy /\/n.

7.5 The Test Statistic

Definition 7.5 (Z-statistic (variance known)). When o is known (rare case):

Y — Y —
7 — Hyo _ Hy,0

oy oy/vn

Under Hyp: Z ~ N(0,1)

Definition 7.6 (t-statistic (variance unknown)). When o2 is unknown (typical case):

Y — Hy,0 _ Y — Hy,0
SE[Y] Sy /v/n

t-stat =

Under Hy and for large n: t-stat ~ N(0,1)

Definition 7.7 (P-value Calculation). For a two-sided test with test statistic ¢:
p-value = 2 x ®(—|t-stat])

where @ is the standard normal CDF.
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7.6 Complete Hypothesis Testing Procedure
1. State Hy and Hy
2. Use CLT to predict the distribution of Y under Hy: Y ~ N(uyo,0%/n)
3. Calculate the sample mean Y = % > Y

4. Compute the test statistic:

Yy —

t-stat = v
SE[Y]

5. Calculate the p-value: p-value = 2®(—|t-stat|)

6. Compare p-value to significance level (o = 0.01,0.05,0.10)

7. Decision: If p-value < «, reject Hy

7.7 Types of Errors

Definition 7.8 (Type I and Type II Errors). o Type I Error (False Positive): Hj is true,
but you incorrectly reject it.

o Type II Error (False Negative): Hy is false, but you fail to reject it.

Decision
Reality | Fail to Reject Hy Reject Hy
Hy True | Correct (1 — ) Type I Error (o)
Hj False | Type II Error (8) Correct (Power =1 — f3)

Definition 7.9 (Key Terminology). o Significance Level («): Pre-specified probability of
Type I error (commonly 0.01, 0.05, or 0.10)
e Critical Value: Value of the test statistic at which the test rejects Hy
* Rejection Region: Area where we reject Hy
o Size of Test: Probability of incorrectly rejecting Hy (equals «)
o Power of Test: Probability of correctly rejecting Hy when it is false (1 — )
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8 Confidence Intervals

8.1 Definition and Construction

Definition 8.1 (Confidence Interval). A confidence interval provides a range of plausible values
for the unknown population parameter, based on sample data.

Theorem 8.1 (Confidence Interval for the Mean). A (1 — «) x 100% confidence interval for py is:
Y + Za/? X SE[Y]

where 2,/ is the critical value from the standard normal distribution.
Common confidence intervals:

e 90% CL: Y +1.65 x SE[Y]
e 95% CL: Y £1.96 x SE[Y]
e 99% CL: Y +2.576 x SE[Y]

Example 8.1. With Y = 0.61 and SE[Y] = 0.049:

95% CI = 0.61 + 1.96 x 0.049 = [0.51,0.71]

Interpretation: We are 95% confident that the true population mean py lies within the
confidence interval.
Note: As we increase the confidence level, the interval becomes wider (more conservative but

less precise).

9 Comparing Means from Two Populations

9.1 Setup

Often we want to compare means from two different populations (e.g., men vs. women, treatment
vs. control).
Let:

ey = population mean for group M (e.g., men)
e uw = population mean for group W (e.g., women)

Definition 9.1 (Hypotheses for Two-Sample Test).
Ho : py — pw = do (often do = 0)
Hy :pnr — pw # do

9.2 Test Statistic for Difference in Means
Draw independent random samples:

« Sample from population M: Yj; with njs observations
e Sample from population W: Yy with ny observations
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By the CLT:
YMNN<MM3)7 YWNN<NW7>
ny nw

Therefore:

Definition 9.2 (Standard Error for Difference in Means).
B _ 52 52
SE[YM—Yw]: 7M+7W
nypo W
Definition 9.3 (t-statistic for Two-Sample Test).

(Yar — Yw) — do

t-stat = W
ST SB[y - Y

Under Hy and large n: t-stat ~ N(0, 1)
Definition 9.4 (Confidence Interval for Difference in Means).
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10 Practice Problems: Confidence Intervals and Two-Sample Tests

Example 10.1 (Single Sample Confidence Interval). Given: n = 420, Y = 646.2, Sy = 19.5
(a) Construct a 95% confidence interval for py.
Solution: First, compute the standard error:

_ 19.
spr) =2 = 195 95
vn 420

The 95% confidence interval is:
Y 4+ 1.96 x SE[Y] = 646.2 £ 1.96 x 0.95 = [644.34, 648.06]

Example 10.2 (Two-Sample Test for Class Size Effect). (b) Compare test scores between districts
with different class sizes.

Given:
o Group 1 (small classes): }71 = 6574, 512/1 =19.4, ny = 238
e Group 2 (large classes): Ys = 650, S%Q =17.9, ny = 182
Difference in means: B B

Y1 — Yy =6574—-650="7.4

Standard error of the difference:

o [Sz S 19.4 179
E Y — Y — _ 1 12 — _ _— = ]. 2
SEW: - Y PO 938 182 828

95% Confidence Interval:

7.4+ 1.96 x 1.828 = [3.82,10.98]
Hypothesis Test:

Hy:pr—p2=0
Hp:pp —p2>0

t-statistic:

1.828

Conclusion: Reject the null hypothesis. Districts with smaller classes have significantly better
outcomes.

t-stat = =4.05

Example 10.3 (Another Two-Sample Comparison). Given:

. 1:/1 = 3178.832, Sy, = 580.0068
o Y5 =3432.06, Sy, = 584.622
o V] — Yy =-253.2284

Standard error:

N
SE[Y] — Ys] = | —% + —2 = 28.82106
ni no
t-statistic: 953.9984
tstat = — "~ — 879
S = 9882106

The p-value = 0, so we reject the null hypothesis of no difference.
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Part 11

Simple Linear Regression
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11 Introduction to Linear Regression

11.1 From Correlation to Regression

We have established that the sample correlation rxy measures the strength of the linear associ-
ation between X and Y. However, correlation has limitations:

o Correlation does not imply causation
e Correlation only shows the strength of association, not the nature of the relationship

Key Point

Regression analysis allows us to:

1. Quantify the relationship between variables
2. Make predictions
3. (Under certain conditions) Make causal inferences

11.2 Sample Statistics Review
Before diving into regression, let’s review the sample statistics we’ll need.

Definition 11.1 (Sample Covariance).

LS - X)v-7)

=1

S =
XY n—1

Definition 11.2 (Sample Variance).

where —1 < rxy < 1. This tells us how much X and Y are related.

11.3 The Population Regression Function

Definition 11.4 (Population Regression Model). The population regression function describes
the relationship between Y and X in the entire population:

Yi = Bo+ P1Xi + ui
where:

o Y; = dependent variable (outcome, response, left-hand-side variable)
o X, = independent variable (regressor, right-hand-side variable)

e [y = intercept (population parameter)

o 51 = slope (population parameter)
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o u; = error term (unobserved factors affecting V)
e 1 =1,2,...,n indexes observations

The term By + B1X; is called the population regression line. It represents the systematic
(predictable) component of Y, while u; captures everything else—the “leftover” or unex-
plained variation.

11.4 Two Main Challenges

When working with regression, we face two fundamental problems:

1. We don’t observe the population: We only have access to random samples, not the entire
population. The population parameters Sy and ; are unknown.

2. Which line should we fit?: Given sample data, how do we choose the “best” line to
estimate the population regression?

11.5 From Population to Sample

Definition 11.5 (Sample Regression Model). Given a random sample of n observations (X1, Y1), (X2, Y2), ...

we estimate:
Y = Bo + B1Xi + 1

where:

. Bo, Bl are estimated coefficients (from the sample)
o ; is the residual (sample analog of the error term)

Error term (u;) vs. Residual (4;):

o u; = population error (unobservable)

o 1; = residual (observable, computed from sample)

Definition 11.6 (Predicted (Fitted) Value). The predicted value of Y for observation i is:
Y; = o+ b X;
This is the value of Y predicted by our estimated regression line.

Property 11.1 (Decomposition of Observed Value). Each observed Y; can be decomposed as:

Vi=Yi+ti= 5o+ bXi+
—_—— =~

predicted residual

31
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12 Ordinary Least Squares (OLS)

12.1 The OLS Problem
How do we choose Bo and Bl? We want to minimize the prediction errors.

Definition 12.1 (OLS Criterion). Ordinary Least Squares (OLS) chooses fy and f; to mini-
mize the sum of squared residuals (SSR):

n n
min Y @7 = min » (¥; — fo — A1 X;)?
Bo,B1 1 Bo,B1 5

Why minimize squared residuals?

o Squaring ensures all errors are positive (large negative errors are as bad as large positive
ones)

e Squaring penalizes larger errors more heavily

o The math works out nicely (differentiable, unique solution)

12.2 OLS Formulas

Taking derivatives and setting them to zero yields the OLS estimators:

Theorem 12.1 (OLS Estimators).

Everything in these formulas is observable—we can compute Bg and Bl directly from our
sample data.

12.3 Interpreting the Coefficients

Property 12.1 (Interpretation of Bl) Consider two observations with X values differing by AX:
Y = Bo+ A1 Xi + i
Yi + AY = fo + i (X + AX) + i

Subtracting:

R A AY
AY = 81AX = —
B1 = A X

Interpretation: Bl is the predicted change in Y associated with a one-unit increase in X.
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Property 12.2 (Interpretation of Bo). From By =Y — 1 X:

B(]:Y when X =0

Bo is the predicted value of Y when X = 0.
Caution: Sometimes this interpretation makes sense (e.g., baseline value), but often X =0 is
outside the range of the data or meaningless.

Example 12.1 (Test Scores and Class Size). Suppose we estimate:
TestScore = 698.9 — 2.28 x ClassSize

Interpretation of 3, = —2.28: A one-student increase in class size is associated with a 2.28-
point decrease in test scores.
Is this effect large or small?

Compare to the outcome’s scale:
« As percentage of mean: gas ~ 0.33%

e In standard deviation units: If Sy = 19, then % ~ 0.12 SD
Prediction: If class size is 24 students:

Y = 698.9 — 2.28(24) = 644.18
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13 Measures of Fit

How well does our regression line fit the data? We need measures to assess the “goodness of fit.”

13.1 Decomposition of Variance

Definition 13.1 (Total Sum of Squares (TSS)). The total sum of squares measures the total
variation in Y:

TSS =) (V;-Y)?
=1

Definition 13.2 (Residual Sum of Squares (RSS/SSR)). The residual sum of squares measures

the unexplained variation:
n

RSS = Zu2 =Y (v - V)
=1

i=1

This is what OLS minimizes.

Definition 13.3 (Explained Sum of Squares (ESS)). The explained sum of squares measures
variation explained by the regression:

ESS =Y (Y;-Y)
=1

Theorem 13.1 (Variance Decomposition).
TSS =ESS+RSS

Total variation = Explained variation 4+ Unexplained variation

13.2 The Coefficient of Determination (R?)

Definition 13.4 (R?). The coefficient of determination is the fraction of variance in Y ex-

plained by X:
ESS RSS

= — = ]_ _—
TSS TSS
Property 13.1 (Properties of R?). e 0<R%2<1
e R? =0: X explains none of the variation in Y’

e R?=1: X explains all the variation in Y (perfect fit)
o In simple regression: R? = 1%, (squared correlation)

R2

R? tells us what share of the variation in Y is explained by the variation in X.
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13.3 Standard Error of the Regression (SER)

Definition 13.5 (Standard Error of the Regression). The SER measures the typical size of the
residuals:

RSS

n—2

We divide by n — 2 because we estimated two parameters (Bg and Bl)
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14 Properties of OLS Residuals

OLS has several important algebraic properties that hold by construction.

Property 14.1 (Property 1: Mean of Residuals is Zero).

1 n
n -
=1
The sample average of OLS residuals is always zero.

Proof. Recall @; = Y; — fo — 1X; and fo = ¥ — pr X.
Substituting:

WG =YY +BX-pXi=Yi-Y)-B(X; - X)
Summing over all observations:

n

D= (Yi-Y)=H) (Xi-X)=0
=1

=1 =1

=0 =0

Property 14.2 (Property 2: Mean of Predicted Values Equals Mean of Y').
Iy o
DN
gt
Proof. Since Y; = fi + 1U;:
n n n n
DS SED S o AT
i=1 i=1 =1 =1
Therefore nY = 37| V;, s0 Ly Y, =Y.

Property 14.3 (Property 3: Residuals are Uncorrelated with X).

Proof.

3
I e

i=1 i=1
By the definition of Bl: ~ -
B, = 2im (Xi = X)(Yi = Y)
i (Xi — X)?
Substituting:
daXi=) (Vi-V)(Xi—X)-) (Vi-V)(X;—X)=0
i=1 =1 =1
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Property 14.4 (Property 4: TSS = ESS + RSS).

A —

Proof. Write Y; =Y = (Y; = Y)) + (Vi = Y) =0 + (V; = V).
Squaring and summing;:

i=1 i=1 i=1 i=1
The cross-term vanishes:
n n
> awY; = ai(Bo+ Hi X))

i=1 i=1

n n

=60 i+ X =0
i=1 i=1
0 0

Therefore TSS = RSS + ESS. O

These properties are algebraic facts that hold for any OLS regression—they follow directly
from how OLS is constructed, not from any assumptions about the data.
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15 The Least Squares Assumptions

When are fy and Bl “good” estimators of the population parameters Sy and 517 We need certain
assumptions to hold.

15.1 Assumption 1: Conditional Mean Zero

Definition 15.1 (Assumption 1: Conditional Mean Independence). The conditional distribution

of u; given X; has mean zero:

This is equivalent to:
Corr(u;, X;) =0

Key Point

This assumption says: at any given value of X, the errors u average out to zero. The error
term is not systematically related to the independent variable.
If Efu; | X;] = 0, then the OLS estimators are unbiased:

ElB] = Bo and E[p] =B

Graphical interpretation: At any value of X, the distribution of Y is centered on the
population regression line By + 51 X. Sometimes we overpredict, sometimes we underpredict,
but on average the error is zero.

15.2 What Happens When Assumption 1 Fails?

Example 15.1 (Test Scores and Class Size). Consider regressing test scores on student-to-teacher
ratio (STR):
TestScore; = By + 1 x STR; + u;

What’s in the error term u;? Everything else that affects test scores:

o Poverty level

o Parental education
e School funding

o Teacher quality

o ctc.

Problem: If Corr(Poverty, STR) > 0 (poorer districts have larger class sizes), then:
Corr(u;, X;) #0
and Assumption 1 is violated!
Definition 15.2 (Omitted Variable Bias). When a variable that affects Y is:

1. Omitted from the regression, AND
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2. Correlated with the included variable X

the OLS estimator is biased. This is called omitted variable bias.

Key Point

When Assumption 1 fails:

o The estimated regression line is biased

o We systematically over- or under-predict

e The slope 31 does NOT have a causal interpretation

e We can only interpret the relationship as association, not causation

15.3 Proof: E[uy;|X;]=0= Cov(u;, X;) =0
Proof. Recall the definition of covariance:
Cov(X, u) = E[(X — E[X])(u— E[u])]

Expanding:

Using the Law of Iterated Expectations:
E[Xu] = E[E[Xu | X]] = E[X - Elu | X]]

If Efu] X]=0:
E[Xul|=E[X-0]=0
Also, by the Law of Iterated Expectations:
E[u] = E[Eu| X]] = E[0] =0

Therefore:
Cov(X,u) = E[Xu] — E[X|Eul|=0—E[X]-0=0

15.4 Assumption 2: Independent and Identically Distributed (i.i.d.)

Definition 15.3 (Assumption 2: i.i.d. Sampling). The observations (X;,Y;) for i =1,2,...,n are
independently and identically distributed (i.i.d.).

This assumption is ensured by random sampling:

e Identically distributed: All observations come from the same popula-
tion/probability distribution

e Independent: Draws have no memory—knowing one observation tells you nothing
about another
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15.5 Assumption 3: No Large Outliers

Definition 15.4 (Assumption 3: Finite Fourth Moments). Large outliers are unlikely. Technically:
X and Y have finite fourth moments (kurtosis exists).

E[XY <00 and E[Y% <o

This is a technical assumption needed for:

e The Law of Large Numbers to apply
e The Central Limit Theorem to work
e OLS to be consistent

OLS can be misleading if there are large outliers in the data.
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16 Sampling Distribution of OLS Estimators

16.1 OLS Estimators as Random Variables

Just like the sample mean Y, the OLS estimators Bo and Bl are random variables. Each time
we draw a new random sample, we get different estimates.

16.2 Properties Under the Three Assumptions

Theorem 16.1 (Unbiasedness of OLS). If Assumptions 1-3 hold, then the OLS estimators are
unbiased:

Elfo] = fo and  E[f1] = by
Theorem 16.2 (Consistency of OLS). If Assumptions 1-3 hold, then as n — oo:

Bot By and B BBy
The OLS estimators are consistent.

16.3 Large Sample Distribution

Theorem 16.3 (Large Sample Distribution of OLS). If Assumptions 1-3 hold, then for large
samples, by the Central Limit Theorem:

B AN (5170E1>

where the variance of 3 is:

Similarly:

Key Point

What affects the precision of B1?

The variance o2 is:

B1

o Smaller when n is larger (more data = more precision)
o Smaller when Var(Xj;) is larger (more spread in X = better estimates)
o Larger when Var(u;) is larger (more noise = less precision)

Intuition for Var(X): If all your X values are clustered together, it’s hard to estimate the
slope. You need variation in X to trace out the regression line.
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17 Practice Problems: Regression

Example 17.1 (Birth Weight Regression). Regression of birth weight (Y') on number of cigarettes
smoked during pregnancy (X): X R
Yi = bo + 51 Xi
Given: fy = 509.384, 31 = —5.614, and X, = 22 cigarettes.
(a) Predict birth weight when mother smokes 22 cigarettes:

Y; = 509.384 — 5.614 x 22 = 509.384 — 123.508 = 385.9 grams
(b) If cigarette consumption changes by AX = 23 — 19 = 4:
AY =3 x AX = —5.614 x 4 = —22.5 grams

A 4-cigarette increase is associated with a 22.5 gram decrease in birth weight.
(c) Find the average outcome Y if X = 21: Using Sy =Y — 51 X:

Y = By + /1.X =509.384 — 5.614 x 21 = 391.5 grams
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18 Hypothesis Testing for Regression Coefficients

18.1 Testing [

We often want to test whether the slope coefficient is statistically significant—that is, whether X
has a real effect on Y.

Definition 18.1 (Hypotheses About ;). Most common case (two-sided test):

Hp: B1 =0 (no relationship between X and Y)
Hy : 1 #0 (there is a relationship)

General case:

Hy: B1= b1
Hy: B # Bro

where 31 o is some hypothesized value.

18.2 Three Steps for Hypothesis Testing
1. Step 1: Compute the Standard Error

where the estimated variance is:

52 =L
oo Iy - X))

2. Step 2: Calculate the t-statistic

3. Step 3: Compute the p-value

For a two-sided test:

_val —P act — 2P (— act
p-value = Pr (|t > [£*]) (="

For a one-sided test (H,4 : 51 < 0):
p-value = ®(t*)

Key Point

Decision Rule: Reject Hy if the p-value is less than the pre-specified significance level «
(typically 1%, 5%, or 10%).
Critical values for two-sided tests:

o 1% level: |t| > 2.576
o 5% level: |t| > 1.96
o 10% level: |t| > 1.645
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Example 18.1 (Testing Significance of Birth Weight Regression). Given: B = —5.614, SE(Bl) =
1.862

TestHo:ﬁ1:Ovs. HAIﬁl%O

Step 1: SE(3;) = 1.862 (given)

Step 2: t-statistic:
—5.614 -0
t-stat = —————— = —3.01
sta 1 362 3.015

Step 3: p-value (two-sided):
p-value = 2®(—| — 3.015|) = 2®(—3.015) ~ 0.0026

Since p-value < 0.01, we reject Hy at the 1% significance level. There is strong evidence that
cigarette smoking affects birth weight.

Example 18.2 (One-Sided Test). For the same regression, test Hy : 51 =0 vs. Hy : 1 <0
The t-statistic is still —3.015.
For a one-sided test:
p-value = ®(—3.015) ~ 0.0013

We reject Hp—there is strong evidence that smoking decreases birth weight.

Testing hypotheses about the intercept [y is rare and often not meaningful. Always include
an intercept in your regression, even if you fail to reject Hy : Bg = 0.
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19 Confidence Intervals for Regression Coefficients

19.1 Confidence Interval for 3,

Definition 19.1 (Two Interpretations). A 95% confidence interval for 3 is:

1. The set of values that cannot be rejected using a two-sided hypothesis test at the 5% level
2. In 95% of all possible samples, the interval will contain the true value of 3y

Theorem 19.1 (Confidence Interval Formula). A (1 — «a) x 100% confidence interval for g; is:
B+ zass x SE(B1)
Common intervals:

o 90% CL: 1 +1.645 x SE(B)
e 95% CI: B +1.96 x SE(By)
e 99% CI: B 4 2.576 x SE(B)

Example 19.1. With 3, = —5.614 and SE(f;) = 1.862:
99% Confidence Interval:

—5.614 + 2.576 x 1.862 = [—10.41, —0.82]

Interpretation: We are 99% confident that the true effect of one additional cigarette on birth
weight is between —10.41 and —0.82 grams.

19.2 Confidence Interval for Predicted Change

Definition 19.2 (Confidence Interval for 51 - AX). When X changes by AX, the predicted change
inY is AY = 5, - AX.
A 95% CI for this predicted change is:

AX x |31 £1.96 x SE(Bl):|

Example 19.2. If a mother reduces smoking by 2 cigarettes (AX = —2):
99% CI for the effect on birth weight:

(—2) x [~10.41, —0.82] = [1.64,20.82] grams

We are 99% confident that reducing smoking by 2 cigarettes increases birth weight by between
1.64 and 20.82 grams.
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20 Regression with Binary Variables

20.1 Binary (Dummy) Variables

One of the most common cases in regression is when the independent variable is binary.

Definition 20.1 (Binary/Dummy Variable). A binary (or dummy, indicator) variable takes

only two values:
D; € {O, 1}

Examples:

e Gender: Male = 1, Female = 0

o Education: BA degree = 1, No BA =0

e Treatment: Treated = 1, Control = 0

o Class size: Small (STR < 20) = 1, Large (STR > 20) =0
20.2 Interpreting Binary Regression

Consider the regression:
Y = Bo+ B1D; + u;

Property 20.1 (Interpretation of Coefficients). When D; = 0:
Yi=Bo+u; = E[Y;|D;=0]=p

When D; = 1:
Yi=F+bi+u = EY;Di=1]=/pF+/

Therefore:
A1 = EYi|D; = 1] — E[Y;|D; = 0]

B1 is the difference in population means between the two groups!

Key Point

In OLS with a binary regressor:

. Bg = sample mean of Y for the group where D =0
e (31 = difference in sample means: Yp—1 — Yp—g

This is exactly the two-sample comparison we studied earlier!

Example 20.1 (Test Scores and Class Size). Let D; = 1 if district ¢ has small classes (STR < 20),
and D; = 0 otherwise.

Regression result:
TestScore; = 369.92 + 44.45 x D;

Interpretation:

. 5:0 = 369.92: Average test score in districts with large classes
o Bo+ B1 =369.92 + 44.45 = 414.37: Average test score in districts with small classes
o [51 = 44.45: Difference in average scores (small — large)
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95% Confidence Interval (given SE(f1) = 22.19):
44.45 £ 1.96 x 22.19 = [0.96, 87.94]

Since the CI does not include zero, the difference is statistically significant at the 5% level.

t-statistic:
B 44.45 — 0

= 2.003
22.19
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Part 111

Multiple Regression
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21 Introduction to Multiple Regression

21.1 Why Multiple Regressors?
So far, we’ve studied simple regression with one independent variable:
Yi=po+5Xi+u
But what if other factors affect Y7 We need multiple regression:

Y = Bo+ b1 X1 + BoXoi + - 4 B X +

21.2 The Problem of Omitted Variable Bias

Example 21.1 (Class Size and Test Scores in California). Consider regressing test scores on
student-to-teacher ratio (STR):

TestScore; = By + 51 X STR; + u;

California has a large immigrant population. Districts with more English learners may:

1. Perform worse on English tests (direct effect)
2. Have larger class sizes (correlation with STR)

If we omit “% English Learners” from the regression, we attribute its effect to STR!
Definition 21.1 (Omitted Variable Bias (Formal)). Omitted variable bias occurs when:

1. An omitted variable affects the outcome Y

2. The omitted variable is correlated with an included regressor X

Both conditions must hold for bias to occur.

Key Point

When omitted variable bias is present:

e E[B1] # f1 (the estimator is biased)

e The estimated relationship may be driven by the omitted factor

e The true relationship might be weaker, stronger, or even opposite in sign
o We cannot give Bl a causal interpretation

Solution: Include the omitted variable in the regression (if possible).

In the California schools example:

o If districts with large classes have more English learners

o And English learners score lower on tests

e Then Bl will be more negative than the true effect of class size

e We're incorrectly attributing the “English learner effect” to class size
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22 Summary of Key Formulas

22.1 Single Random Variable

Concept Formula

Expected Value ElY]=py = Z yi - Pr(Y =)

Variance Var(Y) = 0% = Z(y, —uy)? - Pr(Y =)
i

Standard Deviation oy = 0)2/

Bernoulli Mean EY]=p

Bernoulli Variance  Var(Y) = p(1 —p)

22.2 Two Random Variables

Concept Formula
Pr( X =z,Y =

Conditional Probability PrY =y | X =2)= r(Pr(Xx; ) y)
Conditional Expectation ElY | X =z ZyZ Pr(Y =y | X =x)
Law of Iterated Expectations E[Y]= E[E[]Y | X]]
Independence PriX=2,Y=y)=Pr(X=2x)-Pr(Y =y)
Covariance Cov(X,Y) = E[(X — ux)(Y — py)]

XY
Correlation PXY = Cov(X,Y)

oX0y
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22.3 Sample Mean and Large Sample Results

Concept Formula
1 n
Sample Mean Y == Y;
i
Expected Value of Y E[Y] = py
_ _ 0'2
Variance of Y Var(Y) = X~
n
Standard Error oy = %
Law of Large Numbers ¥ 2 py as n — oo
a 0'2
Central Limit Theorem Y ~ N (My, Y)
n
Yy —
Standardization Z = Y N (0,1)
oy

22.4 Estimator Properties

Property Definition

Smallest variance among unbiased estimators

Unbiased  Elay] = py

Consistent iy 2, Wy as n — oo

Efficient

BLUE Best Linear Unbiased Estimator
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22.5 OLS Regression

Concept

Formula

Population Regression

Sample Regression

Yi = fo + b1Xi + u;

Yi = Bo + B X, + 1
& -DY-Y) Sy

22.6 Measures of Fit

OLS Slope 31 = =
Zi(Xi - X)2 S_%(
OLS Intercept Bo=Y -} X
Predicted Value Y, = BO + Ble
Residual u; =Y; — Az
Concept Formula

Total Sum of Squares

Residual Sum of Squares

Explained Sum of Squares

Variance Decomposition

R2

Standard Error of Regression SER =

TSS=> (V- Y)?

RSS =Y i}
ESS =Y (Y;-Y)

TSS =ESS+ RSS

_ESS - RSS
- TSS TSS

RSS

n—2

R2

23 Multiple Regression: Detailed Treatment

23.1 Omitted Variable Bias Revisited

When the conditional mean independence assumption E[u;|X;] = 0 fails, we have:

= Corr(u;, X;) #0

The correlation between the regressor and the error term is denoted:

Corr(X;, u;)

= PXu
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Theorem 23.1 (Expected Value of /3’1 with OVB). When there is correlation between the regressor

and the error:
Oy

E[f1] = b1 + pxu - -

The term px,, - g—; represents the bias due to the omitted variable.

Meanwhile, the intercept estimator remains unbiased: E [BQ] = Bp.

Key Point

Key facts about omitted variable bias:

1. Larger sample size will NOT help — OVB is a systematic bias that does not
diminish with more data

2. The magnitude of bias depends on:

o Corr(u;, X;) — correlation between error and regressor

o Corr(Xj,Y;) — correlation between regressor and outcome
3. The larger the correlations, the larger the bias

4. The direction of bias depends on the three-way relationship between X;; (included),
Xo; (omitted), and Y; (outcome)

23.2 Addressing Omitted Variable Bias

Strategy: Measure the impact of X (e.g., student-teacher ratio) on the outcome Y while holding
Xo (e.g., % of English learners) constant.

Idea: Compare outcomes among observations with similar values of the potentially omitted
variable.

Example 23.1 (Class Size and Test Scores). To estimate the effect of class size on test scores
without bias from English learner proportions:

o Compare small vs. large classes among districts with similar % of English learners
e This “controls for” the confounding variable

This motivates the multiple regression model, which allows us to estimate the impact of X3
on Y while holding X constant.

23.3 The Population Multiple Regression Function

Definition 23.1 (Multiple Regression Model with Two Regressors). The population regression
model with two explanatory variables is:

Y = Bo + f1X1i + BaXoi +uy
where:

o Y; is the dependent variable (outcome)
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e Xy, is the primary regressor of interest
e Xo; is the control variable
e wu; is the error term — the part of Y; that cannot be explained by Xi; and Xo;

Definition 23.2 (Conditional Expectation Function). The conditional expectation of Y given
specific values of both regressors:

EYi| X1 = 21, Xo; = w2 = Bo + B121 + 212
This gives the population average of test scores for districts with student-teacher ratio 1 and
% of English learners xo.
23.4 Interpretation of Coefficients
Definition 23.3 (Coefficient Interpretation). In the model Y; = By + 81 X1; + B2 Xoi + u;:

o [y = intercept: E[Y|X; =0, X2 = 0] — population average when both regressors equal zero

e (1 = slope coefficient for X;: the change in Y induced by a one-unit change in X7, holding
X5 constant

e 35 = slope coefficient for Xs: the change in Y induced by a one-unit change in X5, holding
X7 constant

Theorem 23.2 (Partial Effect / Ceteris Paribus Interpretation). The coefficient /31 represents the
partial effect of X; on Y:

_AY
AX,

B (holding X9 constant)

Derivation:

Y = Bo + f1X1 + B2 Xo
Y +AY =By + B1(X1 + AXq) + 52 X2
AY = BiAX,

Therefore: p; = AA—}(Z
Equivalent phrases for “holding X5 constant”:

o “After accounting for Xo”
o “After controlling for X5”

o “Ceteris paribus” (all else equal)
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23.5 General Multiple Regression Model

Definition 23.4 (Multiple Regression with k& Regressors). The general population multiple regres-
sion model:

Y = Bo + P1 X + foXoi + - + B X + u;

fori=1,2,...,n
Alternative notation using a constant regressor:

Y = BoXoi + B1 X1 + B2 Xoi + -+ B X + w4

where Xo; = 1 for all i (constant term/regressor).
The conditional expectation:

EBlYi| X1 = 21, Xoi = @2, ..., Xiy = g] = o + Br21 + Bazwa + -+ - + Brwy,
Definition 23.5 (Interpretation of 3; in General Model). The coefficient §; represents:

_AY
~AX,

B (holding all other X’s constant)

This is the change in Y induced by a one-unit change in X, holding all else constant.

23.6 The OLS Estimator for Multiple Regression
Definition 23.6 (OLS Objective in Multiple Regression). Given the model:

Y = Bo+ b1 X1 + BoXoi + - 4 B X +

Objective: Find By, A1, Be, ..., Bk (a total of k 4+ 1 parameters) that minimize the sum of
squared residuals.
The fitted values and residuals:

Y; = Bo+ BrXui + PaXai + - + Bp X
WG =Y;, - Y
Theorem 23.3 (OLS Minimization Problem). The OLS estimators are found by minimizing:

n n
min Zﬂ? = min Z(Y’ —Y;)?
i=1

BO?BIV“»B!@ i=1

This minimizes the Sum of Squared Residuals (SSR), also called Residual Sum of Squares (RSS).

The OLS estimates are found by solving k + 1 simultaneous equations (the first-order con-
ditions). While we derived explicit formulas for simple regression, in multiple regression the
solution typically requires matrix algebra.
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23.7 Omitted Variable Bias Formula
Example 23.2 (Numerical Example of OVB). Consider the true model:
Model 1 (True): Y; = By + B1 X1 + B2 Xoi +
But we estimate the misspecified model (omitting X5):
Model 2 (Estimated): Y; = Bo + B1 X1 + U
Also consider the auxiliary regression:
Xoi=ap+ o1 X1+

Suppose we obtain these estimates:

B = —2.6210 (from Model 2 — biased)
B1 = —1.28970 (from Model 1 — unbiased)

B2 = —0.73403
o1 = 1.8137

OVB Formula: 3 X X
B1 =51+ P2 X &
Verification:

—2.6210 = —1.28970 + (—0.73403)(1.8137) = —1.28970 — 1.33 = —2.6210 v
The bias is 82 x d1 ~ —1.33.

Intuition: Districts with a high % of English learners tend to have not only lower test scores
but also a high student-teacher ratio. When we omit English learners from the regression,
the estimated coefficient on class size captures both effects, leading to a larger (in absolute
value) estimated coefficient.

24 Measures of Fit in Multiple Regression

24.1 Standard Error of the Regression (SER) and RMSE

Both SER and RMSE measure the spread of Y; around Yz (the average distance between observed
values and the regression line predictions).

Definition 24.1 (Standard Error of the Regression).

1 - SSR
- |— 02 = ) ———2
SER = n—k:—liz:;uZ n—k—1

where k is the number of independent variables (regressors, not counting the constant).
The denominator n — k — 1 represents the degrees of freedom.
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Definition 24.2 (Root Mean Squared Error).

RMSE =

Key properties of SER and RMSE:
e Both are measured in the same units as the dependent variable Y

e They represent the “average prediction error” — the typical distance between observed
and fitted values

e When n is large, SER and RMSE are close to each other

e Since Y; = Y; + 1, the residual u; represents the prediction error

24.2 The Problem with R?

Recall the definition:
ESS SSR

2
:7:1—7
R TSS TSS

where:

ESS = Z(Y’ —Y)? (Explained Sum of Squares)

TSS = Z(Yl —Y)? (Total Sum of Squares)

SSR = Z 42 (Sum of Squared Residuals)

Problem: Every time you add a new variable, R? will increase (or at worst stay the same),
regardless of whether that variable is actually useful for explaining Y.
Decomposition: TSS = ESS + SSR

24.3 Adjusted R?

Definition 24.3 (Adjusted R?). The adjusted R? penalizes for adding regressors:

n—1 SSR

R?=1- :
n—k—1 TS8S

Compare to the regular R?:
SSR

- TSS

The factor nfgil penalizes for each additional regressor.

RZ=1

Theorem 24.1 (Properties of Adjusted R?). 1. Since
R*< R?

n—1

=7 > 1 (when k£ > 1), we always have

n
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2. Asn — oo, R? = R? (they converge for large samples)
3. Unlike R?, the adjusted R? can be negative (theoretically)

4. R? can decrease when adding a variable that doesn’t improve fit enough to justify the penalty

25 Least Squares Assumptions for Multiple Regression

For the model:
Y, = B0+ 1 X1 + BoXoi + -+ Bi Xy +ui, i=1,...,n

Definition 25.1 (LS Assumption 1: Conditional Mean Zero).
Elui| X1 =21, Xoi = w2,..., Xy = 23] =0

The conditional distribution of u; given all regressors has mean zero.
Implications:

e No omitted variable bias
e Two conditions that would cause OVB:

1. Corr(u;, X;) # 0 for some included regressor
2. The omitted variable affects Y;

Definition 25.2 (LS Assumption 2: Random Sampling (i.i.d.)).
(Xh', Xgi, ey in, 1/1) are i.i.d.

The observations are independently and identically distributed.
This assumption is automatically satisfied with a random sample from the population.

Definition 25.3 (LS Assumption 3: No Large Outliers). Large outliers are unlikely.
How to check: Examine the min, max, mean, and median of each variable. The gap between
max and mean (or min and mean) will be larger when there are outliers.

Definition 25.4 (LS Assumption 4: No Perfect Multicollinearity). No regressor is an exact linear
function of another regressor.
Perfect multicollinearity occurs when one regressor can be written as a perfect linear com-
bination of others:
Xo; = ¢+ Xq; for some constant c

Example 25.1 (Perfect Multicollinearity). Consider the wage regression:
Yi = Bo + b1 X1 +ui

where Y; is wage and Xy; is years of education.
If we try to add Xg; where Xo; = 2 x X1; (e.g., semesters instead of years):

Y = Bo + f1X1i + BaXoi +uy

This model cannot be estimated because Xy is a perfect linear function of X;. The OLS
algorithm will return “NA” for one of the coefficients (as shown in R output: “1 not defined
because of singularities”).
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[Homoskedasticity Assumption (Optional)] An additional assumption sometimes made:

Var(u;| X15, X2, - - - Xii) = 02

+ (constant)

The variance of the error term is constant across all values of the regressors. When this fails,
we have heteroskedasticity.

26 The Dummy Variable Trap

26.1 Including Indicator Variables
Suppose you want to include an indicator (dummy) variable D; in your regression.

Example 26.1 (Gender and Wages). Define two dummy variables:

Dy — 0 if female
1 if male

Dy; = 1 if female
0 if male

With Y; = wage as the outcome variable, consider the regression:
Yi = Bo + B1Dui + wi

Here 31 represents the average wage difference between males and females.
Alternatively:
Yi = a0+ a1Dgi + u;

In this case, &7 also represents the average wage difference between males and females, but with
opposite sign: &1 = —f1.
26.2 The Trap: Including All Categories

Definition 26.1 (Dummy Variable Trap). If you include both dummy variables representing all
categories of a categorical variable, you create perfect multicollinearity:

Dii+Dy=1 = Dii=1-Dy
This is a perfect linear function!
Theorem 26.1 (Why the Model Fails). Consider the model:
Yi = Bo + B1D1i + B2 D2 + i
Substituting Do; = 1 — Dy;:

Y; = Bo + B1D1i + f2(1 — D1;) + us
= Bo + B1D1i + B2 — B2 D1 +u;
= (Bo + B2) + (B1 — B2)D1i + u;
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This collapses to a single regressor with two parameters — impossible to estimate sepa-
rately!
The software will report “NA” for one coefficient (“not defined because of singularities”).

Rule: When including dummy variables for a categorical variable with k categories, include
only k — 1 dummies. The omitted category becomes the reference group or baseline
category.

Example 26.2 (R Output with Dummy Variable Trap). Correct specification (one dummy for
“white”):

lm(formula = wage ~ education + white, data = CPS1988)
Coefficients:

Estimate Std. Error t value Pr(>lt|)
(Intercept) -123.25681 14.2508 -8.649 <2e-16 **x*

education 46.2504 0.8882 52.070 <2e-16 *x*x*
white 133.1458 9.5332 13.967 <2e-16 ***
Interpretation:

e o = —123.26: Expected wage when education = 0 and white = 0 (non-white)
. Bl = 46.25: Each additional year of education increases wage by $46.25

. Bg = 133.15: White workers earn $133.15 more on average than non-white workers, holding
education constant

If we include both “white” and “non.white” dummies, R drops one automatically and shows
“NA 77'

27 Imperfect Multicollinearity

27.1 Definition and Consequences

Definition 27.1 (Imperfect Multicollinearity). Imperfect multicollinearity occurs when X;
and X5 are highly correlated but not a perfect linear function of each other.
In the model:
Yi = Bo + B1 X1 + B2 Xoi + uy

OLS will work, but poorly:
. Bl and ,5’2 will be very imprecise
e Large standard errors for the coefficients

Theorem 27.1 (Why Imperfect Multicollinearity Causes Problems). Recall that 31 estimates the
relationship between X; and Y holding X5 constant.
If X; and X9 are highly correlated, then:
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e It is difficult to estimate the “net effect” of X alone
e Very little variation in X is left to exploit after accounting for Xo

e Result: SE[3] is large = 95% CI for 3, is wide

27.2 How to Detect Multicollinearity

1. Pairwise correlations: If |Corr(Xi, X2)| > 0.7 or 0.8, this is not a good sign

2. High R? but insignificant coefficients: If the overall model has high R? but individual
coefficients are not statistically significant due to large standard errors

3. Variance Inflation Factor (VIF): A formal diagnostic measure

27.3 Variance Inflation Factor (VIF)
Definition 27.2 (Variance Inflation Factor). For the model:
Y = Bo+ 1 X1 + foXoi + - + B X + u;
To calculate VIF(f):

1. Run the auxiliary regression:

Xli =g + a2X2i + 053X37; + e akai t &

2. Calculate R? from this regression

3. Compute:
1

VIF(B) = ——
Theorem 27.2 (Interpreting VIF). e VIF (Bj) > 5 indicates severe multicollinearity
e Some sources use VIF > 10 as the threshold

o Higher VIF means the standard error of Bj is inflated by that factor

27.4 How to Fix Multicollinearity
1. Do nothing: Sometimes multicollinearity is unavoidable and doesn’t prevent valid inference
2. Drop redundant variables: If two variables measure essentially the same thing
3. Transform multicollinear variables:

e If GDP and Population are both correlated — use GDP per capita instead

e Combine related variables into an index

4. Larger sample size: More data can help provide more variation to separate effects

Example 27.1 (R Output: Multiple Regression with Control Variables). Model: Test scores on
STR, English learners, free lunch eligibility, and expenditure per student.
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lm(formula = read ~ str + english + lunch + expenditure)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 662.090395 9.071658 72.984 < 2e-16 *x*x

str -0.203130 0.286034 -0.710 0.478

english -0.210593 0.030448 -6.916 1.76e-11 **x

lunch -0.550214  0.020324 -27.072 < 2e-16 **x*
0

expenditure  0.004667 .000841  5.551 5.08e-08 **x

95% CI for STR coefficient: —0.203 + 1.96 x 0.286 = [—0.76, +0.36]

The correlation matrix and VIF values show no severe multicollinearity (all VIF < 2).

Key insight: Control variables do not need to have a causal interpretation to be useful for
reducing omitted variable bias.

28 Hypothesis Testing in Multiple Regression

28.1 Testing Individual Coefficients

For the model:
Yi = Bo+ B1Xui + BoXoi + - + B X +

Step 1: State hypotheses for coefficient 5; (where 3,0 can be any number):

Ho:Bj=080 (G=1...,k)
Hy B # Bjo

Step 2: Compute the t-statistic:

Bi—ElBj] a
By CLT: =—=£ ~ N(0,1
Y v/ Var(B;) ( )
Step 3: Calculate p-value and make decision:
p-value = 2 x ®(—|t-stat|)

If p-value < critical p = Reject Hy
95% Confidence Interval: A A
ﬁj + 1.96 x SE[ﬁj]

29 Test of Joint Hypotheses: The F-Test

29.1 Why Individual t-Tests Don’t Work for Joint Hypotheses

Sometimes we need to test multiple restrictions simultaneously (joint hypothesis).
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Example 29.1 (Testing if School Resources Matter). Consider:
Yi = Bo+ B1X1i + P2 Xoi + B3 Xsi + faXui + ui

where: Y = test score, X1 = STR, X2 = % English learners, X5 = % eligible for free lunch, X, =
expenditure per student.
Null hypothesis: School resources (STR and expenditure) don’t matter

H0:61:0ANDB4:0
Alternative: They do matter
H, : Either 81 # 0 OR 4 # 0 (or both)

Here ¢ = 2 (number of restrictions in the joint hypothesis).

Theorem 29.1 (Why Individual t-Tests Fail for Joint Hypotheses). Suppose 81 = 0 and 84 = 0
are both true. At 5% significance level:

o Probability of failing to reject Hy : 31 = 0 is 95%

o Probability of failing to reject Hp : 84 = 0 is 95%

o Probability of failing to reject both: 0.95 x 0.95 = 0.9025

o Probability of rejecting at least one (Type I error): 1 —0.9025 = 9.75%

This is almost double the intended 5% significance levell We reject too often when using
individual t-tests for joint hypotheses.

Additional problem: If Bl and 34 are correlated (which they typically are), the calculation
is even more complicated.

29.2 The F-Statistic

Definition 29.1 (F-Test for Joint Hypotheses). The F-statistic accounts for the correlation be-

tween coefficient estimates:
2+ 15— 2ppy1y t1 - ta

A2
1- pt1,t4

1
F=-
2

where py, ¢, is the estimated correlation between ¢; and #4.
Special case: If t; and t4 are independent:

1
F=_(t +11)

Under Hy and in large samples: F' ~ Xg /q (approximately Fj o)

Theorem 29.2 (Decision Rule). If F is large = Reject the null hypothesis.
Critical values at 5% significance level:

e g =1: Critical F' = 3.84
e g = 2: Critical F' = 3.00
e g = 3: Critical F' = 2.60

63



EC 282: Introduction to Econometrics Spring 2026

29.3 F-Test Using R?

Theorem 29.3 (F-Statistic Formula Using R?). Under homoskedasticity, there’s a simpler formula
comparing two regressions:

o Restricted model: Impose Hy (e.g., 81 = 0,54 = 0)
¢ Unrestricted model: Full model with all parameters
Calculate R? from both models:

(Rinr — R%es)/q

PE AR -k 1)

where:
e ¢ = number of restrictions
e k = number of regressors in unrestricted model

e n = sample size

Key Point

Intuition:
o If the difference in R? is large = F is large = more likely to reject Hy

o If the difference is not big, then maybe the coefficients jointly do not add much pre-
diction power to the model

Example 29.2 (Numerical Example). Given:
R2 =0.8212 (q=2, testing 31 = 0,54 = 0)
R%,, =0.7959
n—k—1=420—4—1=415

Calculate:

~ (0.8212-0.7959)/2  0.0253/2 _ 0.01265 90.36
© (1-0.8212)/415  0.1788/415  0.000431 "

Since 29.36 > 3.00 (critical value for ¢ = 2 at 5%), we reject the null hypothesis.
Conclusion: Classroom resources (STR and expenditure) are jointly statistically significant.
They do matter for test scores.
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Part 1V

Extensions
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30 Non-Linear Regression Models

30.1 Motivation

In many applications, the relationship between Y and X is non-linear:
e The impact of X on Y depends on the level of X
e [ is not constant — it is a function of X
o Sometimes this is theoretically justified

Example 30.1 (Wage and Age). Wages typically increase faster early in one’s career, then the
rate of increase slows down:

e The marginal effect of age on wage is larger at age 25 than at age 50

o This suggests a concave (diminishing returns) relationship

Definition 30.1 (General Non-Linear Population Regression Function).
m:f(Xli,XQi’...,in), i:1,2,...,n

where f(-) is a non-linear function.
Key insight: In some cases, we can still use OLS after appropriate transformations.

30.2 Two Main Approaches

1. Polynomial regression: Population regression function can be approximated by a quadratic,
cubic, or higher-order polynomial

2. Logarithmic transformation: Transform X, Y, or both to logarithms, which makes inter-
pretation easier

31 Polynomial Regression

Definition 31.1 (Polynomial Regression Model).
Y; = Bo+ BiXi + BoXP + -+ BuX] +
Key features:
o Single underlying variable X
o All regressors are powers of X
o Y; = f(X;) — a polynomial function
e The model is linear in parameters, so we can use OLS
e Individual coefficients are hard to interpret directly
Example 31.1 (Common Polynomial Specifications). 1. Linear: Y; = Gy + 51.X; + u;
2. Quadratic: Y; = By + 81X + B X? + u;
3. Cubic: Y; = By + 1 X; + Bo X? + B3 X3P +
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31.1 Interpreting Polynomial Coefficients

For the quadratic model:
Yi = Bo + B1Xi + B X7 + us

The marginal effect of X on Y is found by taking the derivative:

dY;
= 209X
he b1+ 262

Key Point

The marginal effect depends on the level of X:

o If 81 > 0 and B2 < 0: positive but diminishing effect (concave)

e The effect gets smaller as X increases

Example 31.2 (Test Scores and Income (Quadratic)). Given estimates: 3; = 3.473 (SE = 0.310)
and 5 = —0.036 (SE = 0.006)

Model: Y; = Gy + 3.473X; — 0.036 X ?

Marginal effect at different income levels:

dy;
dX;

= 3.473 + 2(—0.036)X; = 3.473 — 0.072X;

Evaluating at X = 15.32 (mean income in $1000s):

dy;
dX; X=15.32

= 3.473 — 0.072(15.32) = 3.473 — 1.103 = 2.37

Interpretation: A $1,000 increase in income when income is around $15,317 is associated with
a 2.37 point increase in test scores.
At different income levels:

Income (X) Marginal Effect (dY/dX)

$5,000 3.11
$15,000 2.39
$30,000 1.31

[Caution] Never extrapolate (make predictions/evaluate) outside the data range of X.
Polynomial models can behave erratically outside the observed data.

31.2 Testing for Non-Linearity

Use F-tests to determine the appropriate polynomial degree:
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Example 31.3 (Testing Linear vs. Cubic). Unrestricted model: Y; = By + (1X; + S X? +
BsX? + u;

Restricted model: Y; = 5y + 51.X; + u;

Test: Hy: 8o =0 AND B3 =0 vs. Hy: Either 82 #£ 0 OR B3 # 0

If F-stat = 15.702, p-value < 0.01 = Reject Hy. Model should be non-linear.

Example 31.4 (Testing Quadratic vs. Cubic). Hy : 3 = 0 (quadratic is sufficient) vs. Ha : 83 # 0
If F-stat = 0.2768, p-value = 0.5997 > 0.01 = Fail to reject Hy.
Conclusion: X3 should NOT be in the model (overfitting). Quadratic is sufficient.
Note: This is equivalent to an individual t-test on [s.

Key Point

Summary for Polynomial Models:
e Can be estimated using OLS
e Individual coefficients are hard to interpret
e Best option: Take the derivative and evaluate the marginal effect at a specific X

e Decide on the appropriate form using F-tests or t-tests

32 Logarithmic Transformations

32.1 Properties of Logarithms

Definition 32.1 (Natural Logarithm). log(X) = In(X) denotes the natural logarithm of X.
Logarithms are very useful for modeling relative (percentage) changes.

Theorem 32.1 (Logarithm Approximation for Small Changes). For small changes:

In(X + AX) — In(X) = In <X +AX> ~ 8

X TX

This equals the relative change in X. Multiplying by 100 gives the percentage change:

AX
~ X 100 = % change in X

32.2 Three Logarithmic Specifications
Definition 32.2 (Logarithmic Model Types). 1. Linear-Log: Y; = fy + 81 In(X;) + u;
2. Log-Linear: In(Y;) = o + 51.X; + u;

3. Log-Log: 111(}/1) = Bo + b1 hl(Xl) + u;
(1 is interpreted very differently in each case!
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32.3 Linear-Log Model
Definition 32.3 (Linear-Log Specification).
Y = Bo+ B In(X;) +

Derivation of interpretation:
Before: Y; = Bo + 1 In(X;) + u;
After: Y; + AY = By + B1 In(X; + AX) + u;

Subtracting:
AX
AY = fi[In(X; + AX) —In(X;)] = f1 - X
Therefore:
8 = AY
'TAX/X

Interpretation (Linear-Log): A 1% increase in X is associated with a /100 unit change
inY.
Equivalently: A 1% increase in X is associated with a 0.01/3; change in Y.

32.4 Log-Linear Model
Definition 32.4 (Log-Linear Specification).
In(Y;) = Bo + f1.Xi + u;

Derivation:
Before: In(Y;) = Bo + £1.Xi + w;
After: In(Y; + AY) = o + 51(X; + AX) + u;

Subtracting:
In(Y; + AY) —In(Y;) = 51AX
% ~ 1AX
Therefore:
_AY/)Y
=Xy

Interpretation (Log-Linear): A l-unit increase in X is associated with a 100 x $1%
change in Y.

Equivalently: () represents the percentage change in Y (divided by 100) for a one-unit
increase in X.
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32.5 Log-Log Model
Definition 32.5 (Log-Log Specification).
In(Y;) = Bo + B1 In(X;) + wi

Derivation:
Before: In(Y;) = Bo + 1 In(X;) + u;
After: In(Y; + AY) = By + f1 In(X; + AX) +

Subtracting:
In(Y; + AY) —In(Y;) = 51[In(X; + AX) — In(X;)]
AY AX
v Y
Therefore:
_AY/Y
b= AX/X

Interpretation (Log-Log): A 1% increase in X is associated with a 5% change in Y.
(1 is the elasticity of Y with respect to X.

32.6 Summary Table

Model Specification 51 Interpretation

Linear Y =050+ /X AX=1=AY =5
Linear-Log Y = Sy + f1 In(X) 1% 1T in X = AY = 5,/100
Log-Linear In(Y) = fy+ /X AX =1= %AY = 1005,

Log-Log In(Y)=p +AInX) 1%+ in X = %AY = 4,

32.7 Practical Considerations
All logarithmic models:

o Can be estimated using OLS

o Hypothesis tests and confidence intervals are interpreted as usual

e Standard errors and t-statistics apply to the transformed model

When to use log transformations:

e Income, wages: Often have skewed distributions — log transformation helps
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o Plot the relationships to see if logs are appropriate
« Use diagnostic tests to compare model fits

Example 32.1 (Log-Linear with Dummy Variable). Model: In(Y;) = 8o + f1.D; + u;
where D; is a dummy variable (0 or 1).
When Di =0: ln(Y;‘D, = 0) = /80 -+ u;
When D; = 1: In(Y;|D; =1) = 5o+ 1 + u;

Therefore: YD )
- il =
s (15 s)

Interpretation: J; represents the approximate percentage difference in Y between groups
(when D=0vs. D=1).

[Warning] The approximation In(1 + z) ~ = only works when AY/Y is small (typically less
than 10-15%).
For exact changes, use the exponential:

ln(Yi) =B+ /X, = Y= ePo+b1Xi

33 Exact Percentage Change in Log Models

Recall the log-linear model:
In(Y;) = Bo + p1Xi + u;

When £ is small, we use the approximation In(1 + x) ~ x to interpret [3; as the approximate
percentage change in Y for a one-unit change in X. However, this approximation only matters
when [, is large.

33.1 Deriving the Exact Formula
Starting from the regression output:

<AYz+Yz
In (=2 "°*

7 > = 51AX;

This simplifies to:

AY;
1 L41) = /AX;
H< Y, + > B1

Using the approximation when changes are small:

AY;
Y;

~ [1AX; = BAY;
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33.2 Exact Percentage Change

For the exact percentage change, consider two values X;9 and Xj;:

InYio = Bo + S1Xio + wi
InY; = Bo+ f1 X + uy
The percentage change in Y is:
AY; Yo -Yio Ya

=1
Yi Yio Yi

Taking the exponential:

AY; Y;
YZ = exp <1n Yﬂ> — 1 =exp(f1Xin — f1Xio) — 1
f i0

The exact percentage change formula for log-linear models is:

|%AY = exp(F1AX) — 1]

Example 33.1 (Large Coefficient). If 3} = 0.3 and AX = 1:
o Approximate: %AY ~ 100 x 0.3 = 30%

o Exact: %AY =exp(0.3) —1=1.35—-1=0.35 =35%

The difference of 5 percentage points matters when ; is large!

34 Linear Probability Model

34.1 Regression with a Binary Dependent Variable

So far we have considered cases where Y is continuous (e.g., test scores, traffic fatality rates). Now
consider cases where Y is binary:

Outcome Y Values
Getting into college {0,1}
Smoking status {0,1}
Obesity {0,1}

Mortgage approval/denial {0,1}

Question: How do we interpret 5; when X; is continuous and Y; is binary?

34.2 The Linear Probability Model (LPM)

Definition 34.1 (Linear Probability Model). The Linear Probability Model is:
Y = Bo+ B1Xi +u;

where Y; € {0,1}.
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34.3 Interpreting the Conditional Expectation
For a binary outcome:
ElY;|X;] =1 x Pr(Y; = 1|X;) + 0 x Pr(Y; = 0|X;) = Pr(Y; = 1|X;)

Therefore:
E[Y;|X;] = Pr(Y; = 1|X;)

In the Linear Probability Model, the conditional expectation equals the probability that
Y =1 given X.

34.4 Derivation

Starting with:
Y = Bo + f1Xi+ ui

Taking the conditional expectation:

E[Y;|X;] = E[Bo + S1.Xi + ui| Xi]
= E[Bo| X;] + E[f1X:| Xi] + Elu;| X;]
= Bo+ L1 X; +0

Since E[Y;|X;] = Pr(Y; = 1|X;):

[Pr(Y; = 1|X,) = o + A1 X

The sample analog: e R R
Pr(Y; = 11X;) = Bo + 1 X;

34.5 Interpretation of Coefficients

In the LPM:
- AY B APr(Y =1|X)

hi=3x AX

A~

p1 represents the change in probability (in percentage points) that Y = 1 for a one-unit
change in X.

Example 34.1 (Mortgage Denial — Continuous Regressor). Consider the probability of mortgage
denial conditional on the payment-to-income (P/I) ratio:

Y = Bo + B1Xi +u;

where Y; = 1 if mortgage is denied, and X; is the P/I ratio.
Example calculations:
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. f’;(Yz =1|X; =0.3) = 0.12 (12% denial rate)
e Pr(Y; =1|X; = 0.5) = 0.26 (26% denial rate)

The slope coefficient:

=0.70

B = Pr(Y; = 1]0.5) — Pr(Y; = 1/0.3) _ 0.26—0.12 _ 0.14
e 0.5—0.3 T 02 02

Interpretation: The probability of denial goes up by 0.14 (or 14 percentage points) as the
P/I ratio increases by 0.2. ) )
Using regression coefficients 8y = —0.07991 and B; = 0.60353:
ls;(deniallX =0.4) = —0.07991 + 0.4 x 0.60353 = 16.2%
f’\r(deniallX =0.3) = —0.07991 + 0.3 x 0.60353 = 10.1%

The difference is 16.2% — 10.1% = 6.1%. If P/I increases by 0.1, the probability of denial goes
up by approximately 6 percentage points.

34.6 LPM with Binary Regressor

Consider:
Yi= 5o+ 1D+ u;

where both Y; € {0,1} and D; € {0,1}.

The conditional expectation:

E[Y;|D;] = Pr(Y; = 1|D;) = Bo + p1D;
For D, = 0:
Pr(Y; =1|D; =0) = 5y (probability when D = 0)
For D, =1:
Pr(Yi=1|D;=1) = 5o+ 1 (probability when D = 1)

Example 34.2 (Mortgage Denial by Race). Let Y; = 1 if mortgage denied, D; = 1 if applicant is
Black.
Results:

. f’;(YZ = 1|D; = 0) = By = 9.3% (denial rate for non-Black applicants)
. f’\r(Y; =1|D; = 1) = o + 1 = 28.4% (denial rate for Black applicants)

Therefore: 1 = 28.4% — 9.3% = 19.1%

Interpretation: Bl = 0.191 means being Black is associated with a 19.1 percentage point
higher probability of mortgage denial.

With controls (3rd model): When holding P/I ratio constant, being Black is associated
with a 17.7 percentage point decline in approval probability.
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34.7 Issues with the Linear Probability Model

[Important Limitation] The LPM has a fundamental problem: predicted probabilities can
fall outside the [0, 1] interval.

Since Pr(Y = 1|X) = o + £1 X is a linear function of X:
o If 81 > 0, for sufficiently large X: Pr(Y =1|X) > 1
o If 81 > 0, for sufficiently small X: Pr(Y =1|X) <0

This is not realistic since probabilities must be between 0 and 1.

Conceptually:
o The LPM assumes the effect of X on Pr(Y = 1/X) is constant (slope = (1)
e In reality, the marginal effect should diminish as we approach probability bounds

o More sophisticated models (Probit, Logit) constrain predictions to [0, 1]

Key Point

Despite this limitation, the LPM remains useful for:
o Estimation: OLS provides consistent estimates
o Interpretation: Coeflicients have straightforward interpretation
o Inference: Standard hypothesis tests and confidence intervals apply

The predicted probabilities may be problematic, but the estimated coefficients and their
interpretations remain valid.
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