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1 Types of Data

Question 1.1: Examine the cross_section data. What makes this “cross-sectional”? Give two
other examples of cross-sectional data in economics.

Cross-sectional data consists of observations on multiple units (students) at a single point
in time (one semester). Each row represents a different individual, and we observe their
characteristics at the same moment.

Examples:

• Census data: income, education, and demographics of households in a given year
• Survey of firms: employment, revenue, and industry for companies in 2024
• Housing prices: sale prices and characteristics of homes sold in a city during one month

Question 1.2: Examine the time_series data. What makes this “time series”? Why might
the observations in a time series NOT be independent?

Time series data consists of observations on a single unit (one state’s economy) over multiple
time periods (24 months). The key feature is tracking the same entity through time.

Observations in time series are often NOT independent because:

• Serial correlation: today’s unemployment is correlated with yesterday’s
• Trends: economic variables often trend upward or downward over time
• Seasonality: patterns that repeat (e.g., retail sales peak in December)
• Persistent shocks: an economic shock affects multiple future periods

Question 1.3: Examine the panel_data. How does panel data combine features of both cross-
sectional and time series data?

Panel data has:

• Multiple units (5 students) like cross-sectional data
• Multiple time periods (4 semesters) like time series data
• Each unit is observed in each time period

Advantages of panel data:

• Control for unobserved individual heterogeneity (fixed effects)
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• Larger sample size than pure time series
• Can study dynamics: how individuals change over time
• Better for causal inference: can compare same person before/after treatment
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2 Random Variables and Probability Distributions

Question 2.1: Define a Bernoulli random variable and identify the parameter p.

A Bernoulli random variable is a discrete random variable that takes only two values: 0
and 1 (or “failure” and “success”). It has a single parameter p = P (Y = 1), the probability of
success.

In this case: p = 0.04 (the probability of having colon cancer)

Question 2.2: Calculate population mean and variance.

(a) Population mean:
pop_mean <- mean(population$colon_cancer)
The population mean is exactly 0.04 (equal to p = 0.04 by construction)

(b) Population variance:
pop_var <- var(population$colon_cancer) * (N-1) / N
The population variance is exactly 0.0384 (equal to p(1− p) = 0.04× 0.96 = 0.0384)

Question 2.3: Show mathematically that E[Y ] = p and Var(Y ) = p(1− p).

For E[Y ]:
E[Y ] =

∑
y

y · P (Y = y) = 0 · (1− p) + 1 · p = p

For Var(Y ):

Var(Y ) = E[(Y − µ)2] = (0− p)2(1− p) + (1− p)2 · p

= p2(1− p) + (1− p)2p = p(1− p)[p+ (1− p)] = p(1− p)

Verification:

• Theoretical E[Y ] = 0.04; Calculated = 0.04 ✓
• Theoretical Var(Y ) = 0.04× 0.96 = 0.0384; Calculated = 0.0384 ✓
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3 Joint and Marginal Distributions

Question 3.1: Calculate the marginal distributions.

Y = 0 (Long) Y = 1 (Short) Marginal of X

X = 0 (Rain) 0.15 0.15 0.30
X = 1 (No Rain) 0.07 0.63 0.70

Marginal of Y 0.22 0.78 1.00
Marginal distribution of X (Weather):

• P (Rain) = P (X = 0) = 0.15 + 0.15 = 0.30
• P (No Rain) = P (X = 1) = 0.07 + 0.63 = 0.70

Marginal distribution of Y (Commute):

• P (Long) = P (Y = 0) = 0.15 + 0.07 = 0.22
• P (Short) = P (Y = 1) = 0.15 + 0.63 = 0.78

Question 3.2: Verify that probabilities sum to 1.

• Sum of joint probabilities: 0.15 + 0.15 + 0.07 + 0.63 = 1.00 ✓
• Sum of marginal X: 0.30 + 0.70 = 1.00 ✓
• Sum of marginal Y : 0.22 + 0.78 = 1.00 ✓
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4 Conditional Probability and Bayes’ Theorem

Question 4.1: Calculate the conditional probabilities:

(a) P (Short | Rain):

P (Y = 1 | X = 0) =
P (X = 0, Y = 1)

P (X = 0)
=

0.15

0.30
= 0.50

(b) P (Short | No Rain):

P (Y = 1 | X = 1) =
P (X = 1, Y = 1)

P (X = 1)
=

0.63

0.70
= 0.90

(c) P (Long | Rain):

P (Y = 0 | X = 0) =
P (X = 0, Y = 0)

P (X = 0)
=

0.15

0.30
= 0.50

Question 4.2: Does knowing the weather provide useful information about commute time?

Yes! Weather provides valuable information:

• Without weather info: P (Short) = 0.78
• Given rain: P (Short | Rain) = 0.50
• Given no rain: P (Short | No Rain) = 0.90

Knowing it’s raining substantially decreases the probability of a short commute (from 78%
to 50%), while knowing it’s not raining increases it to 90%. This shows X and Y are not
independent.

Question 4.3: Using Bayes’ Theorem, calculate P (Rain | Long Commute).

P (Rain | Long) =
P (Long | Rain) · P (Rain)

P (Long)

=
0.50× 0.30

0.22
=

0.15

0.22
≈ 0.682

Interpretation: If someone had a long commute, there’s about a 68% chance it was
raining.
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5 Conditional Expected Value and Law of Iterated Expectations

Question 5.1: Calculate E[Y ] directly.

E[Y ] =

6∑
i=1

yi · P (Y = yi) =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

21

6
= 3.5

Question 5.2: Calculate conditional expected values:

(a) E[Y | X = 1] (given odd):

E[Y | Odd] =
1

3
(1 + 3 + 5) =

9

3
= 3

(b) E[Y | X = 0] (given even):

E[Y | Even] =
1

3
(2 + 4 + 6) =

12

3
= 4

Question 5.3: Law of Iterated Expectations:

E[Y ] = E[Y | X = 0] · P (X = 0) + E[Y | X = 1] · P (X = 1)

= 4× 0.5 + 3× 0.5

= 2 + 1.5 = 3.5

This matches our direct calculation of E[Y ] = 3.5, confirming the Law of Iterated Expec-
tations:

E[Y ] = E
[
E[Y | X]

]
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6 Independence, Covariance, and Correlation

Question 6.1: Test whether X (weather) and Y (commute time) are independent.

For independence, we need P (X = x, Y = y) = P (X = x) · P (Y = y) for all x, y.
Check:

P (Rain)× P (Short) = 0.30× 0.78 = 0.234

P (Rain AND Short) = 0.15

Since 0.234 ̸= 0.15, X and Y are NOT independent. Rain affects commute time.

Question 6.2: Covariance and Correlation

(a) Covariance ≈ 27 (exact value depends on random seed)
(b) Correlation ≈ 0.67 (exact value depends on random seed)
(c) Interpretation:

• Positive correlation: students who study more tend to score higher
• Magnitude around 0.65–0.70 indicates a strong positive linear relationship
• Correlation is unitless, so changing hours to minutes wouldn’t change r

Question 6.3: If Cov(X,Y ) = 0, does this mean X and Y are independent?

No! The covariance and correlation are approximately 0, but Y = X2! They are clearly NOT
independent—knowing X tells you exactly what Y is.

This illustrates that covariance/correlation only measure linear relationships. X and X2

have a perfect nonlinear (quadratic) relationship, but zero linear correlation because positive
and negative X values both give positive Y values, canceling out.

Key takeaway: Zero covariance ⇒ no linear relationship, but does NOT imply indepen-
dence.
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7 Sampling and the Law of Large Numbers

Question 7.1: Is your sample mean exactly equal to the population mean? Why or why not?

The sample mean is typically NOT exactly equal to the population mean.
This happens because:

• Random sampling introduces sampling variability
• Each sample is just one possible realization from the population
• The sample mean Ȳ is itself a random variable with its own distribution

Question 7.2: State the Law of Large Numbers in your own words.

Pattern: As sample size increases, the sample mean gets closer to the population mean.
Law of Large Numbers: As n → ∞, the sample mean Ȳ converges in probability to the

population mean µY :
Ȳ

p−→ µY

In plain language: larger samples give more accurate estimates of the population
mean.

Question 7.3: Sampling distribution of the mean:

(a) The mean of sample means is very close to the population mean (= 0.04). This confirms
that E[Ȳ ] = µY (the sample mean is an unbiased estimator).

(b) The variance of sample means is close to σ2/n:

Var(Ȳ ) =
σ2

n
=

0.0384

100
= 0.000384

This confirms the theoretical result about the variance of the sampling distribution.
(c) The histogram is approximately bell-shaped (normal). This is due to the Central

Limit Theorem: regardless of the population distribution (which is Bernoulli here), the
sampling distribution of the mean is approximately normal for large samples.

Ȳ
a∼ N

(
µY ,

σ2
Y

n

)
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