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Handout 1: Types of Data & Review of Probability

EC 282: Introduction to Econometrics

Spring 2026

Instructions: Run the provided R code and answer the questions. Show your work for calculations.

1 Types of Data

Run the code below to generate three different datasets.

1 library(dplyr)
2 library(tidyr)
3 library(ggplot2)
4 set.seed (282)
5

6 # CROSS -SECTIONAL DATA
7 cross_section <- data.frame(
8 student_id = 1:20,
9 gpa = round(runif (20, 2.0, 4.0), 2),

10 hours_studied = round(rnorm(20, mean = 15, sd = 5), 1),
11 employed = sample(c(0, 1), 20, replace = TRUE , prob = c(0.6, 0.4))
12 )
13

14 # TIME SERIES DATA
15 time_series <- data.frame(
16 month = seq(as.Date("2024 -01 -01"), by = "month", length.out = 24),
17 unemployment_rate = round (4.5 + cumsum(rnorm(24, 0, 0.3)), 2)
18 )
19

20 # PANEL DATA
21 panel_data <- expand.grid(
22 student_id = 1:5,
23 semester = c("Fall 2024", "Spring 2025", "Fall 2025", "Spring 2026")
24 ) %>%
25 arrange(student_id, semester) %>%
26 mutate(
27 gpa = round (2.5 + 0.1 * as.numeric(factor(semester)) +
28 rnorm(n(), 0, 0.3) + rep(rnorm(5, 0, 0.5), each = 4), 2),
29 gpa = pmin(pmax(gpa , 0), 4.0)
30 )

Question 1.1: Examine the cross_section data. What makes this “cross-sectional”? Give
two other examples of cross-sectional data in economics.

Question 1.2: Examine the time_series data. What makes this “time series”? Why might
the observations in a time series NOT be independent?

Question 1.3: Examine the panel_data. How does panel data combine features of both cross-
sectional and time series data? What are the advantages of having panel data?
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2 Random Variables and Probability Distributions

Run the code below to create a population with a known disease rate.

1 N <- 100000
2 p_cancer <- 0.04
3

4 population <- data.frame(
5 id = 1:N,
6 colon_cancer = sample(c(0, 1), N, replace = TRUE ,
7 prob = c(1 - p_cancer , p_cancer))
8 )

Question 2.1: The variable colon_cancer is a Bernoulli random variable. Define what a
Bernoulli random variable is and identify the parameter p in this case.

Question 2.2: Using the population data, calculate:

(a) The population mean µY = E[Y ]

(b) The population variance σ2
Y = Var(Y )

Question 2.3: For a Bernoulli random variable, show mathematically that E[Y ] = p and
Var(Y ) = p(1− p). Verify that your calculated values are close to the theoretical values.

3 Joint and Marginal Distributions

Consider the relationship between weather (Rain/No Rain) and commute time (Long/Short). The
joint distribution is given below:

Y = 0 (Long) Y = 1 (Short) Marginal of X

X = 0 (Rain) 0.15 0.15 ?
X = 1 (No Rain) 0.07 0.63 ?

Marginal of Y ? ? 1.00

1 joint_dist <- matrix(
2 c(0.15 , 0.15, 0.07, 0.63),
3 nrow = 2, byrow = TRUE ,
4 dimnames = list(
5 X = c("Rain (X=0)", "No Rain (X=1)"),
6 Y = c("Long (Y=0)", "Short (Y=1)")
7 )
8 )

Question 3.1: Calculate the marginal distribution of X (weather) and the marginal distribution
of Y (commute time). Fill in the missing values in the table above.

Question 3.2: Verify that all joint probabilities sum to 1 and that each marginal distribution
sums to 1.
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4 Conditional Probability and Bayes’ Theorem

Using the joint distribution from Part 3:
Question 4.1: Calculate the following conditional probabilities:

(a) P (Short Commute | Rain) = P (Y = 1 | X = 0)

(b) P (Short Commute | No Rain) = P (Y = 1 | X = 1)

(c) P (Long Commute | Rain) = P (Y = 0 | X = 0)

Question 4.2: Does knowing the weather provide useful information about commute time?
Explain using the conditional probabilities you calculated.

Question 4.3: Using Bayes’ Theorem, calculate P (Rain | Long Commute). Show your work.
Hint: Bayes’ Theorem states that P (A | B) = P (B|A)·P (A)

P (B)

5 Conditional Expected Value and Law of Iterated Expectations

Consider rolling a fair six-sided die. Define:

• Y ∈ {1, 2, 3, 4, 5, 6} as the outcome
• X = 0 if Y is even, X = 1 if Y is odd

Question 5.1: Calculate E[Y ] directly using the definition of expected value.

E[Y ] =
6∑

i=1

yi · P (Y = yi)

Question 5.2: Calculate:

(a) E[Y | X = 1] (expected value given the roll is odd)

(b) E[Y | X = 0] (expected value given the roll is even)

Question 5.3: Use the Law of Iterated Expectations to calculate E[Y ]:

E[Y ] = E[Y | X = 0] · P (X = 0) + E[Y | X = 1] · P (X = 1)

Verify that this equals your answer from Question 5.1.

6 Independence, Covariance, and Correlation

Question 6.1: Two random variables X and Y are independent if P (X = x, Y = y) = P (X =
x) · P (Y = y) for all x, y. Using the commute/rain example from Part 3, test whether X (weather)
and Y (commute time) are independent.

Question 6.2: Run the code below to generate data on study hours and exam scores:

1 n_students <- 500
2 hours_studied <- rnorm(n_students , mean = 10, sd = 3)
3 exam_score <- 50 + 3 * hours_studied + rnorm(n_students , 0, sd = 10)
4

5 cov(hours_studied , exam_score) # Covariance
6 cor(hours_studied , exam_score) # Correlation
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(a) What is the covariance between hours studied and exam score?

(b) What is the correlation?

(c) Interpret the sign and magnitude of the correlation.

Question 6.3: If Cov(X,Y ) = 0, does this mean X and Y are independent? Run the code
below and explain.

1 x_vals <- runif (1000, -1, 1)
2 y_vals <- x_vals^2
3

4 cov(x_vals , y_vals)
5 cor(x_vals , y_vals)

7 Sampling and the Law of Large Numbers

Using the population created in Part 2:
Question 7.1: Draw a random sample of n = 100 from the population and calculate the sample

mean.

1 sample_100 <- sample(population$colon_cancer , 100)
2 mean(sample_100)

Is your sample mean exactly equal to the population mean? Why or why not?
Question 7.2: Run the code below to see how the sample mean changes as sample size increases:

1 sample_sizes <- c(50, 100, 200, 500, 1000, 5000, 10000 , 50000)
2 pop_mean <- mean(population$colon_cancer)
3

4 sample_means <- sapply(sample_sizes , function(n) {
5 mean(sample(population$colon_cancer , n))
6 })
7

8 data.frame(n = sample_sizes , sample_mean = sample_means , pop_mean = pop_
mean)

What pattern do you observe? State the Law of Large Numbers in your own words.
Question 7.3: Draw 1000 samples of size n = 100 and calculate the mean of each sample:

1 sample_means_dist <- replicate (1000, mean(sample(population$colon_cancer ,
100)))

2

3 mean(sample_means_dist) # Mean of sample means
4 var(sample_means_dist) # Variance of sample means
5 hist(sample_means_dist) # Histogram

(a) How does the mean of the sample means compare to the population mean?

(b) Compare the variance of the sample means to σ2/n where σ2 is the population variance. What
do you notice?

(c) What shape does the histogram have? Why?
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